Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки химическая модификация

    Классификация. По методам получения все высокомолекулярные соединения можно разделить на три группы природные (например, белки, нуклеиновые кислоты, целлюлоза, натуральный каучук), синтетические (полиэтилен, полихлорвинил и др.) и искусственные, которые получены путем химической модификации природных полимеров. [c.378]


    Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты вторичных мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев—тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток. [c.290]

    Поставленные задачи решаются на основе современных методов исследования ферментов. Практическая направленность занятий связана с освоением различных методов регистрации скоростей ферментативных реакций, включающих использование сопряженных ферментных систем и метода радиоактивного анализа. С целью определения активности мембранных ферментов осваиваются техника получения различных субклеточных структур и приемы работы с различными типами детергентов. Проблемы структурного анализа ферментов решаются с привлечением методов избирательной химической модификации белков, флуоресцентных методов, а также методов ковалентной и адсорбционной иммобилизации на различных носителях, включая искусственные фосфолипидные мембраны (липосомы). Кроме того, осуществляется практическое знакомство с различными аспектами кинетического исследования ферментов осваиваются различные способы оценки кинетических параметров, ингибиторный анализ, проводится исслс- [c.329]

    После гидролиза растительных белков остаточные полипептиды можно видоизменять различными способами и особенно посредством реакций ацилирования. Эта химическая модификация заключается в реагировании различных ацилирующих агентов типа ангидридов моно- или дикарбоновых кислот, таких, как ангидрид уксусной, янтарной, пропионовой, глутамине вой или яблочной кислот, с полипептидами, имеющими функциональные группировки — аминные, кислородные или серосодержащие. [c.610]


    После трансляции многие полипептиды подвергаются различным модификациям. У большинства из них отщепляется N-концевой метионин, так что N-концевым остатком становится вторая аминокислота. У эукариот происходит так называемый процессинг некоторых белков, когда полипептидная цепь расщепляется в определенных сайтах с образованием более коротких белковых молекул со специфическими функциями. В некоторых случаях, особенно в эукариотических клетках, к определенным аминокислотам ферментативным путем присоединяются фосфатные группы, липиды, углеводы или другие низкомолекулярные соединения. В результате этих химических модификаций образуются белки, выполняющие в клетке специфические функции. [c.40]

    Благодаря химической модификации поверхности капилляров, ЭОП может контролироваться, исключаться или даже обращаться. Определение значения ЭОП служит единственной возможностью определить изменения на поверхности капилляров, например, благодаря необратимой адсорбции компонентов пробы. Все другие методы характеристики поверхности капилляров исключаются при очень небольших поверхностях (1 см ). Поверхностно-модифицированные капилляры не проявляют явлений гистерезиса при смене буферов и из-за незначительной адсорбции очень хорошо подходят для анализа белков (см. ниже). [c.12]

    Действие большей части гормонов осуществляется по одному из двух механизмов. В одном случае гормон присоединяется к рецептору на клеточной мембране. Например, глюкагон, адреналин и АКТГ связываются на поверхности клеток и стимулируют синтез сАМР (гл. 5, разд. В, 5), что в свою очередь запускает процесс химической модификации белков. Вполне вероятно, что стимуляция синтеза простагланди-нов (гл. 12, разд. Е, 3) осуществляется именно таким образом. Второй механизм действия гормонов связан с их присоединением к цитоплазматическим рецепторам, что в конечном счете приводит к влиянию на про цесс транскрипции РНК. Стероидные гормоны, тироксин и гормон роста (соматотропин) относятся к числу соединений, которые действуют, по-видимому, именно таким образом. Рецепторы стероидных гормонов, локализованные в цитоплазме, прочно связывают поступающие в клетку стероиды [2]. После этапа активирования комплекс гормон — рецептор проникает в ядро, где связывается с определенными участками хроматина (связывающими местами), причем в последнем процессе, по-видимому, принимают участие некоторые негистоновые белки [3]. Химические основы указанных взаимодействий еще не выяснены. Можно лишь сказать, что в конечном итоге это приводит к инициированию транскрипции отдельных генов в клетках, чувствительных к гормонам [За]. [c.316]

    Низкомолекулярные пептиды, в частности пептидные гормоны, как правило, наделены несколькими функциями. В этом отношении они отличаются от белков, которые, за редким исключением, монофункциональны, физиологическое действие отдельного природного пептида часто проявляется в совершенно различных системах организма и по своему характеру настолько разнообразно, что в такой сложной картине подчас трудно увидеть стимулирующее начало одного соединения и обнаружить между многими активностями пептида какую-либо связь. Несмотря на сложность функционального спектра, механизмы всех физиологических действий пептида совершенны по своей избирательности, чувствительности и эффективности. Поэтому при изучении конкретной функции возникает представление о молекулярной структуре пептида как о специально предрасположенной для выполнения только единичного рассматриваемого действия. Природным олигопептидам присуща согласованность двух на первый взгляд взаимоисключающих качеств - полифункциональности и строгой специфичности. Подход к установлению количественной зависимости между строением и биологической активностью олигопептидов, детально рассматриваемый в следующем юме монографии "Проблема белка", включает решение двух структурных задач, названных автором данной монографии [28] прямой и обратной. Прямая задача заключается в выявлении всех низкоэнергетических конформационных состояний природного олигопептида, которые потенциально, как будет показано, являются физиологически активными. Эта задача требует знания только аминокислотной последовательности молекулы и решается на основе теории и расчетного метода, использованных уже в анализе структурной организации многих олигопептидов. Обратная структурная задача по своей постановке противоположна первой. Ее назначение заключается в априорном предсказании химических модификаций природной последовательности, приводящих к таким искусственным аналогам, каждый из которых имеет пространственное строение, отвечающее конформации, актуальной лишь для одной функции исходного соединения. Конечная цель решения обратной задачи, таким образом, состоит в прогнозировании монофункциональных аналогов, которые бы только в своей совокупности воспроизводили полный набор низкоэнергетических конформаций природного пептида и весь спектр его биологического действия (подробно см. гл. 17). [c.371]


    Химическая модификация фермента. Некоторые белки при формировании третичной структуры подвергаются постсинтетической химической модификации (см. главу 1). Оказалось, что активность ряда ключевых ферментов обмена углеводов, в частности фосфорилазы, гликогенсинтазы и др., также контролируется путем фосфорилирования и дефосфорили-рования, осуществляемого специфическими ферментами—протеинкиназой и протеинфосфатазой, активность которых в свою очередь регулируется гормонами (см. главу 10). Уровень активности ключевых ферментов обмена углеводов и соответственно интенсивность и направленность самих процессов обмена определяются соотнощением фосфорилированньгх и де-фосфорилированных форм этих ферментов. [c.154]

    Бол сложно организованной является регуляция, основанная на изменении активности фермента или белкового фактора путем его химической модификации. Чаще всего для этой цели используют реакции фосфорилирования белков с помощью специальных, специфичных к определенным белкам или группам белков — протеинкиназ (подробнее см. 10.2). [c.420]

    ХИМИЧЕСКАЯ МОДИФИКАЦИЯ КАК ПУТЬ РЕГУЛЯЦИИ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ БЕЛКОВ [c.424]

    Кроме 20 наиболее часто встречающихся, имеется ряд минорных аминокислот, являющихся компонентами лишь некоторых белков. Каждая из этих минорных аминокислот представляет собой химическую модификацию основных протеиногенных аминокислот, например гидроксипролин или гидроксилизин. [c.17]

    Конъюгат (5.7) сохраняет полную ферментативную активность по отношению к казеину, несмотря на практически полную модификацию введенного в реакцию белка. Химическая модификация этого конъюгата по непрореагировавшим альдегидным группам полимера-носителя и альдиминовым связям позволила получить четыре новых конъюгата (5.8) — (5.П), отличающихся от исходного (5.7) по стабильности связи полимер — фермент и [c.173]

    В опытах по частичной разборке и реконструкции 50S субчастиц критичными для пептидилтрансферазной активнрсти были белки L6, L11 и L16 их добавление к производным 50S субчастицы, лишенным более трети исходных белков, восстанавливало активность. Однако позже выяснилось, что добавление только одного белка L16, но в большом избытке, тоже восстанавливает пептидилтрансферазную активность оказалось, что белки L6 и L11 лишь помогают белку L16 прочно встроиться в частицу. Далее были получены данные, еще более подтверждавшие ключевую роль белка L16 в организации пептидилтрансферазного центра химическая модификация его гистиди-нового остатка инактивировала пептидилтрансферазу. Тем не менее, [c.150]

    Исследование структурных и конформационных свойств индивидуальной полипептидной субъединицы обычно ведется по трем аспектам рассматриваются первичная, вторичная и третичная структуры, как это было предложено Линдерстрем-Лангом [И]. Организмы используют для синтеза белков основной набор из 20 аминокислот (см. гл. 23.2). Необычные аминокислоты, которые эпизодически встречаются в белковых структурах, часто являются результатом химической модификации простетической группы гема (остатки 70—80) они остались неизменными в процессе эволюции, тогда как другие части молекулы играют, по-видимому, меньшую роль для спецификаций, особенно остатки, не участвующие в агре- [c.222]

    Существует несколько методов, с помощью которых можно обнаружить аминокислотные остатки, ответственные за биологическую активность белков. В первом методе белок необходимо подвергнуть частичной деградации, в особенности вблизи Л/- и С-кон-цов соответственно с помощью аминопептидаз и карбоксипептидаз. Например, удаление (с помощью карбоксипептидазы) трех остатков с С-конца рибонуклеазы не влияет на ее активность. Более глубокая деградация в этой части молекулы, однако, приводит к инактивации. По второму методу необходимо подвергнуть химической модификации боковые группы аминокислотных остатков белка. Естественно, что результаты такого рода экспериментов проще интерпретировать в том случае, когда эта модификация специфична. Например, легко идентифицировать область связывания кофермента пиридоксальфосфата в аминотрансферазе. Альд-имин, образующийся в результате конденсации кофермента с е-аминогруппой остатка лизина, восстанавливают борогидридом натрия и идентифицируют, так как он не затрагивается при гидролитическом распаде. Аналогично, ферменты, содержащие тиольные группы, такие как алкогольдегидрогеназа, 3-фосфоглицераль-дегиддегидрогеназа и папаин, обычно ингибируют реакцией с п-хлормеркурибензойной или иодуксусной кислотой. Специфичность модификации белков можно усилить, если структура реаген- [c.282]

    При образовании ФСК малая молекула субстрата стехиомет-рически связывается с большой молекулой фермента. Очевидно, субстрат непосредственно взаимодействует с определенным малым участком молекулы фермента — с ее активным центром. Природа активного центра, т. е. совокупность и расположение аминокислотных остатков, а также кофакторов (см. стр. 94), входящих в его состав, устанавливается посредством химических и физических исследований. Изменения активности, возникающие в результате химической модификации белка, позволяют выявить функциональные группы активного центра. Сведения [c.374]

    Следует подчеркнуть, однако, что значительно больший удельный вес имеет посттрансляционная химическая модификация белков, затрагивающая радикалы отдельных аминокислот. Одной из таких существенных модификаций является ковалентное присоединение простетической группы к молекуле белка. Например, только после присоединения пиридоксальфосфата к -аминогруппе остатка лизина белковой части—апо-ферменту—образуется биологически активная трехмерная конфигурация аминотрансфераз, катализирующих реакции трансаминирования аминокислот. Некоторые белки подвергаются гликозилированию, присоединяя олигосахаридные остатки (образование гликопротеинов), и обеспечивают тем самым доставку белков к клеткам-мишеням. Широко представлены химические модификации белков в результате реакции гидроксилирования остатков пролина, лизина (при формировании молекул коллагена), реакции метилирования (остатки лизина, глутамата), ацети-лирования ряда N-концевых аминокислот, реакции карбоксилирования остатков глутамата и аспартата ряда белков (добавление экстра-карбоксильной группы). В частности, протромбин (белок свертывающей [c.532]

    Микроокружение аромвтических остатков в белках исследуется методом флуоресценции. Для этих целей используются также анв-лиз спектров КД в области 250 — 300 нм и дифференциальные УФ-спектры, получаемые при изменении pH водной среды, температуры или состава растворйтелей. По спектрам КД следят за кон-формационными превращениями белкоа и пептидов а процессе их функционирования, а также проверяют, сохранилась ли натианая конформация при изменении условий окружающей среды или при химической модификации природного соединения. Для изучения конформации белков, содержащих парамагнитные центры — такие, как гем в гемоглобине или спиновые метки (различные группы, имеющие неспаренный электрон), введенные с помощью хими- [c.112]

    Субстраты — малые молекулы или малые группы больших молекул. Напротив, фермент макромолекулярен. Следовательно, субстрат непосредственно взаимодействует с определенным малым участком молекулы фермента — с ее активпы.и центром. Природа активного центра, т. е. совокупность и расположение аминокислотных остатков, а также кофакторов (см. с. 48), входящих в его состав, установлена для ряда ферментов. Мы уже упоминали о фермент-субстратном узнавании (с. 58). Изменения активности, возникающие в результате химической модификации белка, позволяют выявить функциональные группы активного центра. Сведения о его структуре дают оптические и спектраль- ные методы, а также рентгеноструктурный анализ комплексов фермента с конкурентными ингибиторами, строение которых близко к строению субстратов. [c.182]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    Как известно, в химии белка, а в самые последние годы и в химии нуклеиновых кислот начинает приобретать значение химический подход к специфическому гидролизу биополимера. Этот подход основан на специфической реакции одного какого-либо типа мономерных звеньев биополимера, в результате которой происходит химическая модификация всех таких звеньев в молекуле. В модифицированном биополимере связи между определенными мономерными звеньями могут быть ослаблены, и благодаря этому возникает возможность избирательного гидролиза по месту модифицированных звеньев. Изменение структуры одного из звеньев может также изменить способность соответствующей полисахаридазы расщеплять биополимер по данной гликозидной связи. Таким образом создаются условия для различных типов фрагментаций с помощью одного и того же фермента. [c.634]

    Природный токсин стрихнин (рис. 9.21) оказался полезным пнструментом для выделения и биохимической характеристики глицинового рецептора. Его [Ш] производное имеет сродство, достаточно высокое для того, чтобы его можно было использовать в тестах связывания рецепторного белка (7 0=11,3 нМ), а иммобилизация стрихнина на аффинной колонке позволила Бецу и сотр. очистить рецептор, солюбилизированный тритоном, Б 1000 раз за одну стадию. Более того, будучи фоточувствитель-ным соединением, стрихнин оказался и без химической модификации удобной фотоаффинной меткой. УФ-облучение комплекса стрихнина и рецептора приводит к ковалентному мечению только одного полипептида (М 48 ООО). [c.295]

    Модифицированные а-аминокислоты. Некоторые а-аминокислоты, находясь в составе белков, могут вступать в определенные химические реакции, приводящие к изменению строения радикала, т.е. подвергаться химической модификации. Такие кислоты выделены из )олизатов белков. Непосредственно в синтезе белков они не твуют. Как правило, химическая модификация радикалов нокислотных остатков в составе белков сводится к тем или м окислительным превращениям. [c.321]

    В нуклеиновых кислотах остатки, участвующие в образовании водородных связей с комплементарными гетерощ1клами, имеют, как правило, резко сниженную реакционную способность но сравнению со свободными гетероциклами. Например, реакция (VII.2) остатков аденина и цитозина с галогенацетальдегидами проходит с участием экзоциклической аминогруппы и атома азота гетероцикла, которые являются непосредственными участниками уотсон-криковских взаимодействий (см. рис. 26). Поэтому в этенопроизводные легко превращаются остатки, находящиеся в однонитевых участках, и существенно труднее — остатки, образующие двуспиральную структуру. Реагенты, различающие одно- и двунитевые структуры полинуклеотидов, широко используются для детального изучения вторичной структуры нуклеиновых кислот, в частности для выявления шпилечных структур. В табл. 7.7 приведены некоторые реагенты, широко применяемые для изучения пространственной структуры белков и нуклеиновых кислот методом химической модификации. [c.324]

    Наряду с химической модификацией для тех же целей люжно использовать ферменты, катализирующие гидролиз нуг<лсиноных кислот. Например, в экспериментах по футпринтингу комплексов ДНК с белками часто используют панкреатическую дезоксирибонуклеазу (ДНКаза I), которая выделяется в пищеварительный тракт млекопитающих поджелудочной яселезой. Этот фермент катализируе г гидролиз внутренних фосфодиэфирных связей в двунитевых и однонитевых ДНК. При кратковременной обработке ДНК этим ферментом, проведенной так, чтобы в среднем на каждую молекулу ДНК пришелся одш разрыв, расщепление приводит к образованию фрагментов самой разнообразной длины, легко регистрируемых с помощью гель-электрофореза. При такой же обработке комплекса ДНК с белком расщепления в участках, экранирован 1ых белковой молекулой, не происходит и фрагменты соответствующей длины на электрофореграмме не обнаруживаются. На рис. 94 в качестве примера приведен результат исследования с помощью футпринтинга фрагмента ДНК с ферментом РНК-полимеразой (см. [c.324]

    Внутриклеточные белки синтезируются на свободных рибосомах. Они не имеют сигнальных последовательностей, однако в больщинстве своем синтезируются в виде пробелков. Некоторые из них после соответствующего процессинга функционируют в цитоплазме, другие импортируют во внутриклеточные органеллы. Кроме адресной модификации, существуют многообразные химические модификации и локальный протеолиз белков, необходимые для их полноценного функционирования. Такими модификациями могут быть фосфорилирование по гидроксильным группам аминокислот, метилирование, гидроксилирование, присоединение карбоксильных, сульфо- и ацетильных групп и др. [c.470]


Смотреть страницы где упоминается термин Белки химическая модификация: [c.29]    [c.45]    [c.143]    [c.237]    [c.97]    [c.193]    [c.388]    [c.538]    [c.245]    [c.143]    [c.237]    [c.198]    [c.428]    [c.159]    [c.245]    [c.14]    [c.469]    [c.470]    [c.118]    [c.121]    [c.125]   
Практическая химия белка (1989) -- [ c.45 , c.57 , c.59 , c.61 , c.66 ]




ПОИСК







© 2024 chem21.info Реклама на сайте