Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение различных объектах

    В монографии представлено современное состояние аналитической химии брома Приведены важнейшие сведения по общей химии брома, имеющие значение для химико аналитической характеристики элемента, рассмотрены физические, физико-химические 1 химические методы онределения брома. Даны конкретные примеры его определения различных объектах классическими и инструментальными методами. [c.248]


    Коагуляция может происходить и в тех случаях, когда в растворе встречаются коллоидные частицы, несущие разноименные-электрические заряды, например при смешении отрицательно заряженного золя кремневой кислоты с положительно заряженным золем желатина и т. д. Этот прием успешно применяется для быстрого определения 5102 в различных объектах. [c.106]

    Для решения этих задач в ФАП-КФ имеется более 200 геометрических операторов для определения геометрических объектов, для осуществления различных действий над ними — переноса вращения объединения областей, эквидистантных и лекальных кривых построения линий пересечения поверхностей, сечений, проекций аппроксимации кривых. ФАП-КФ содержит также средства для анализа геометрических объектов и их взаимного расположения. Имеются операторы вывода графической информации на устройствах отображения. [c.240]

    Формирование системы переработки информации из отдельных подсистем существенно расширяет ее возможности, обеспечивая универсальность в рамках ряда родственных проблем. Направленность системы на решение ряда проблем будет, очевидно, более целесообразна с точки зрения затрат на ее разработку, хотя такая система будет иметь и более сложную функциональную структуру. Возможность многопланового использования системы может быть обеспечена за счет типизации математического описания различных объектов, выделения частей, явлений, описываемых определенным типом уравнений. Для решения родственных проблем достаточно включить в общую схему алгоритма специфические для данной проблемы модули. Включение и изменение структуры алгоритма предусматриваются на этапе разработки системы и в дальнейшем производятся управляющей программой системы. [c.68]

    Пользователи (человек, различные объекты управления, периферийные устройства и, наконец, сами прикладные программы) обращаются к вычислительной системе с требованиями выполнения определенных работ. В простейшем случае заданием системы может быть требование выполнения указываемой программы. Объектом управления в данном случае являются некоторые массивы данных, описываемые в задании. Системные ресурсы— это необходимый объем памяти, требуемый программе для исполнения, и определенное число и виды периферийных устройств. [c.58]

    С различными объектами симметрии связаны модификационные переходы в углеводородных системах. Данные по экспериментальному определению модификационных переходов подробно представлены в главе 6 настоящей книги. Напомним лишь, [c.184]


    Каждый радиоизотоп характеризуется определенной скоростью распада. Эту скорость принято выражать через период полураспада. Поскольку период полураспада нуклидов постоянен, это дает способ установления возраста различных объектов. Вследствие легкости обнаружения радиоизотопы можно также использовать в качестве меченых атомов, чтобы следить за поведением элементов в их реакциях. Мы обсудили три способа регистрации радиоактивного излучения при помощи фо- [c.274]

    В аналитической спектроскопии в названиях различных методов, как правило, отражены объекты исследования и процессы, лежащие Р) основе определения этих объектов, например атомно-абсорбционный, атомно-флуоресцентный методы анализа. В методе, основанном на селективной лазерной ионизации, объектом исследований являются атомы, а процессы, позволяющие детектировать эти атомы, связаны с образованием ионов. Поэтому, с точки зрения авторов настоящего учебного пособия, данный метод логично называть в общем виде атомно-ионизационным (АИ). [c.183]

    Развитие аналитической химии на современном этапе характеризуется широким вовлечением в ее арсенал новых химических, физических и физико-химических методов анализа. Использование различных по своему характеру методов анализа обусловлено чрезвычайным многообразием объектов анализа — сложны по своему составу технических н природных материалов. Эти методы должны обеспечить не только определение различных количеств веществ, но и их эффективное разделение, так как анализируемые объекты в большинстве случаев настолько сложны, что определение в них отдельных элементов или соединений не представляется возможным. [c.3]

    Измерение электрической проводимости растворов является основой кондуктометрических методов анализа. Эти методы просты, практически очень удобны, достаточно точны и позволяют решить ряд важных научно-исследовательских и производственных задач, не поддающихся решению другими аналитическими методами. Измеряя электролитическую проводимость растворов, можно определить основность органических кислот, растворимость и произведение растворимости малорастворимых соединений, влажность различных объектов, степень минерализации вод, почв и грунтов. Большое значение имеет также определение кислотности различных растворов методом кондуктомет-рического титрования. [c.232]

    Определение влажности. Для определения влажности самых различных объектов (органические растворители, газы, твердые соли, текстильные материалы, бумага, зерно, почвы и т. д.) применяют прямую кондуктометрию. Принцип измерения основан на проводимости исследуемых объектов. За последние годы в практике сельского хозяйства подобные приборы получили широкое применение для определения влажности зерна. Некоторый объем зерна помещается в измерительную ячейку между электродами и измеряется сопротивление этой пробы. Чем большей влажностью характеризуется зерно, тем меньшим сопротивлением оно обладает. Обычно приборы градуируются в процентах (мае.) влажности для каждого вида зерна. Кондуктометрический метод определения влажности зерна отличается быстротой и достаточно высокой точностью. [c.234]

    Объект химического анализа — состав различных веществ, материалов и вообще предметов окружающего нас мира. При этом в зависимости от поставленной задачи в роли составных частей (компонентов) могут выступать как химические соединения (вещества), так и элементы. На уровне микромира составным частям соответствуют вполне определенные элементарные объекты. Так, химические соединения (вещества) состоят из молекул или формульных е д ин и ц. В молекулах иногда целесообразно выделить определенные совокупности атомов, например функциональные группы в молекулах органических соединений. Если составная часть — элемент, в микромире имеем дело с атомами этого элемента. [c.5]

    Выяснение возможных путей циркуляции ароматических углеводородов в различных объектах окружающей среды осуществлялось в экспериментальных моделях. Для этих целей специально были разработаны высокочувствительные газохроматографические методы раздельного определения исследуемых веществ в почве, растениях, воде и воздухе. Предварительная подготовка проб заключалась в извлечении петролейным эфиром ароматических углеводородов из почвы, растений и воды с последующей очисткой и концентрированием. [c.85]

    Разработчики химических реагентов для нефтяной промышленности при оформлении заявок на их токсикологические исследования представляют основные физико-химические характеристики реагентов, их состав, во.зможные формы и способы применения и другие сведения, необходимые для выполнения научно-исследовательской работы с продуктом (ГОСТ, ОСТ, ТУ, ВТУ), а также представляют химический метод определения подлежащих изучению веществ и их метаболитов в различных объектах внешней среды (воздух, вода, почва). [c.99]


    Основным понятием данной теории является информация - понятие, обобщенное, всеобъемлющее и исчерпывающее определение которому, видимо, дать невозможно. Оно интуитивно столь же понятно, сколь и неопределенно. Информацию связывают обычно с теми или иными проявлениями различных объектов или процессов. Поэтому часто, чтобы сделать изложение более наглядным, прибегают к наиболее прозрачным интерпретациям понятия информации. Например, информацию об объекте или процессе можно связать с нашим знанием всех характерных параметров рассматриваемого объекта или процесса. Тогда естественно прирост информации приравнивать к увеличению нашего знания. Значит, чем больше приобретенная информация, тем меньше степень нашего незнания или, другими словами, тем меньше неопределенность нашего знания об объекте или процессе. Более того, можно сделать такой вывод 1) нулевой энтропии соответствует полная информированность, а макси- [c.100]

    Современные вычислительные машины, как цифровые, так и непрерыв-вого действия, широко используются при проектировании различных объектов и систем. Весьма часто задача синтеза оптимальной системы имеет следующее содержание задана некоторая известная структура проектируемого объекта с определенным числом параметров, изменяя которые можно улучшать критерий качества проектируемой системы. В этом случае задача оптимального проектирования сводится к отысканию такой комбинации параметров, при которой критерий имеет экстремальное значение при соблюдении заданных ограничений. В качестве изменяемых параметров могут быть взяты самые различные величины, специфические для данной конкретной задачи, например концентрации сырья, температуры, давления и др. [c.44]

    Курс квантовой механики и квантовой химии на химических факультетах университетов представляет собой начальное введение в основной раздел современной теоретической химии, без знания которого работать в химии, конечно, можно, как можно работать без знания математики. Любая теория, однако, дает определенную широту взгляда, позволяет увидеть общие стороны казалось бы разнородных явлений и открывает возможности для сравнения различных объектов и проведения аналогий между их свойствами. Математически оформленная теория дает к тому же и возможность рассчитать свойства объектов. Так, классическая теория химического строения позволяет сказать, пусть на основе только лишь феноменологических построений, какова может быть структура химического соединения, каковы особенности этой структуры и свойств рассматриваемого соединения сравнительно с другими соединениями, каков набор химических и физикохимических свойств должен быть присущ этому соединению. Квантовая теория оперирует более детальной информацией о строении вещества, что позволяет ей объяснять и предсказывать многие свойства химических соединений (и особенности проявления этих свойств), в том числе такие, которые подчас неподвластны классической теории, например свойства возбужденных состояний, хотя, конечно, по своей общности выводов квантовая теория в чем-то и уступает классической теории. [c.3]

    Гравиметрический анализ (весовой анализ) — важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и конечной стадией определения. Г. а. основан на законе сохранения массы веществ при химических превращениях. Измерительным прибором служат аналитические весы. Результаты анализа выражают обычно в процентах. Г. а. сыграл большую роль при установлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др., применяется при определении химического состава различных объектов (горных пород и минералов), при установлении качества сырья и готовой продукции и т. д. [c.43]

    Применение метода атомно-абсорбционной спектрометрии с пламенной атомизацией. Определению натрия в различных объектах методом атомно-абсорбционного анализа посвящено много работ [30, 77, 78, 171, 420, 663, 847, 872, 910, 914, 935, 940, 991, 1193, 1223, 1246). Заслуживают внимания монографии [67, 407]. [c.126]

    В табл. 48 приведены самые разнообразные примеры использования нейтронно-активационного анализа для определения натрия в различных объектах. [c.139]

    Нейтронно-активационное определение натрия в различных объектах [c.140]

    В монографии приводятся данные ао аналитической химии марганца, методам его выделения и определения в различных объектах, дается характеристика ряда соединений как с органическими, так и с неорганическими лигандами. Большое внимание уделяется экспрессным методам определения марганца. [c.220]

    Методы моделирования основаны на понятии подобня различных объектов. При этом подобными называют объекты, параметры которых, определяющие их состояние в любой момент времени и в любой точке пространства, отличаются в определенное число раз, т. е. масштабом подобия. Подобие объектов может быть полным или неполным, если у объектов подобны все или только наиболее существенные параметры. Один из двух объектов, между которыми существует подобие, можно назвать объектом моделирования, а другой — его моделью. [c.41]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Практическое применение электроосмоса ограничено из-за большого расхода электроэнергии. Тем не меиее, это явление используется для удаления влапг при осушке различных объектов (стен зданий, сыпучих материалов, при строительстве плотин, дамб и т. д.), для пропитки материалов различными веществами. При электроосмотической осушке в объект вводят электроды, представляющие собой полые металлические трубы с отверстиями. В замкнутой электрической цепи происходит электроосмотический перенос жидкости к определенному электроду, которая собирается в нем, и затем ее откачивают насосом. Все большее значение приобретает электроосмотическая фильтрация, сочетающая в себе два процесса фильтрацию под действием приложенного давления и электроосмотический перенос жидкости в электрическом поле. [c.230]

    Известно, что за рубежом эколоп1ческая сертификация развивается не только как сертификация продукции по определенным параметрам, но и как сертификация различных объектов, связанных с охраной и рациональным использованием природных ресурсов. [c.188]

    Основной вывод, который следует из многочисленных да1шых по определению диоксинов в различных объектах, заключается в том, что главными источниками зафязнения природной среды диоксинами являются химические производства, в первую очередь фирмы-производигели хлорорганической продукции и заводы по сжиганию бытового мусора. [c.45]

    Диафамма на рис 6.8 иллюстрирует соотношение растворенных форм металлов и их общее содержание в речной воде [124]. Видно, чго существенная доля свинца переносится во взвешенном состоянии, а кадмий мигрирует преимущественно в растворенной форме. Как уже отмечалось выше, без знания форм существования ионов металлов в щзиродных средах невозможно оценить степень их токсичности Поэтому при выборе методов пробоподготовки необходим тщательный контроль за любым воздействием на анализируемый объект температуры, давления, окислителей и восстановителей, растворителей Важно знать основные источники систематических погрешностей с тем, чтобы учитывать их при конструировании схем пробоподготовки. Операция пробоподготовки, если речь идет об определении различных состояний и форм элементов, не должна видоизменять исходные формы либо они должны быть воспроизводимы. [c.231]

    К настоящему времени описаны условия атомно-абсорбционного определения 76 элементов в различных объектах сплавах, чистых металлах, нефтепродуктах, реактивах, почвах, золах растений, биологических жидкостях, водах и т. д. Метод высокоэкспрессен, характеризуется низкими пределами обнаружения — позволяет определять 0,1—0,005 мкг/мл примесей в растворе с погрешностью 1—4%. [c.36]

    В книге дано описание новых приборов для проведения термографического, рентгеновского, спектрального, э лектронно-мик-роскопического и оптического анализов, методов препарирования объектов разного агрегатного состояния и структуры, а также методик определения различных идентификационных характеристик исследуемых веществ. [c.4]

    Стереомикроскопичес кий метод позволяет определить структуру поверхности исследуемого материала, высоту и ориентацию отдельных аморфных и кристаллических фаз, характер расположения кристаллов и т. п. Электронно-микроскопическая фотография стереоскопической структуры объекта получается фотографированием его под различными углами и последующего совмещения двух снимков в стереоскопе. Для фотографирования определенных участков объекта под различными углами применяют специальные стереопатроны, которые позволяют наклонять препарат п о отношению к оси микроскопа. При рассмотрении двух стерео-микрофотографий в стереокомпараторе можно получить не только качественную пространственную структуру объекта, но и определить размеры отдельных элементов сложного рельефа. [c.133]

    Методика определения. При анализе различных объектов германии отделяют от мешаюших ионов экстракцией четыреххлористым углеродом из 9 iW раствора НС1 или дистилляцией Ge l4 (в присутствии окислителя). [c.382]

    Осиовно сферой примепенпя атомно-абсорбционного метода с ЭТА является определение следов элементов в различных объектах. Так, папример, прямое определение большинства элементов в морских и природных водах стало возможным только с применением иепламениых методов атомизации. Другим примером служит прямое определение микропримесей (иа уровне их содержаний 10 —10 %) в особо чистых металлах, материалах. [c.181]

    Справедливость этой концепции анализа была проверена при определении многих элементов в различных объектах. Решение следующей важной задачи — полного теоретического описания физико-химических процессов, происходящих в ЭТА — позволит сделать )ешающий шаг в создании абсолютного (т. е. бесстандартно-го) метода анализа. [c.183]

    В этой главе изложены методы определения элементов, которые являются примесями в различных объектах. Рассматриваются элементы, в том числе редкие, которые дают соединения (главным образом комплексные), близкие по свойствам. Предлагается несколько методов, чтобы можно было сравнить их селективность и чувствительность. Для определения некоторых элементов рекомендованы весьма чувствительные кинетичесеие методы, в которых каталитические реакции протекают с изменением окраски растворов или ее интенсивности. [c.129]

    Одним нз преимуществ бумажной хроматографии является ее чувстнмтельноспз бумажную хроматографию широко применяют в качественном анализе различных объектов, а также для количественного определения компонентов смеси пос.пе их разделения. [c.617]

    Классификация различных объектов приследует определенную цель, которой может быть выявление групп, отвечающих набору параметров, характеризующих объект с точки зрения расчета, конструирования, эксплуатации, ремонта, монтажа и т.д. [c.190]

    Еще в 1908—1910 гг. было установлено, что радиоактивность солей калия пропорциональна содержанию в них калия [1153, 1868] По собственной радиоактивности калия возможно его количественное определение в различных объектах. Первые радиохимические определения калия по его излучению относятся, вероятно, к 1928—1929 гг. [1763] и тридцатым годам текущего столетия [1382, 1673]. Однако вследствие несоверщенства аппаратуры того времени предложенный метод отличался малой точностью [1382] и малой чувствительностью [2457] Только с появлением современных приборов для измерения радиоактивности стало возможным более точное и сравнительно простое определение калия [255а]. [c.105]

    При анализе микропроб применяют высокоточную импульсную аргоновую дугу, предел обнаружения достигает 0,5—1 нг натрия 1196]. В атмосфере азота предел обнаружения натрия понижается на полтора порядка [954]. Приведены полные сведения об определении натрия методом локального лазерного микроспектрального анализа в различных объектах с использованием двухступенчатой схемы лазерного пробоотбора с последуюпщм возбуждением спектров в электрическом источнике предел обнаружения натрия 10 г 1984]. [c.99]

    В методическом отношении активационное определение примесей в натрии и его соединениях мало чем отличается от определения натрия в различных объектах. Выбор варианта или метода активацион--ного анализа зависит прежде всего от характера определяемых примесей. Так, при определении С, N и О в металлическом натрии использован фотоактивационный метод, основанный на фотоядерных реакциях 0(7, п) С, N(7, п) и 0(7, п) с последующими химическими превращениями (например, С СО2 КагСОз) и измерением активности аннигиляционного у-излучения на сцинтилля- [c.178]

    Применение перйодата калия или натрия для окисления Мп(П) дает возможность с высокой точностью и более надежно определять марганец в различных объектах. Впервые этот метод для определения марганца был предложен в 1917 г. [1531]. Растворы получают более устойчивыми, чем при окислении персульфатом аммония [161, 664]. Реакция (см. стр. 28) протекает довольно быстро в горячем растворе, содержащем HNO3 или H2SO4. Для ускорения этой реакции применяют соли серебра [638, 640]. [c.55]

    Инструментальные методы. В последние годы инструментальные методы активационного анализа определения ультрамалых количеств марганца нашли чрезвычайно широкое применение. Их преимущество заключается в том, что облучение и измерение наведенной активности производится без разрушения исследуемых образцов. Вследствие этого они позволяют сократить время определения и устранить ошибки, вносимые при химической обработке проб [509]. Инструментальный метод основан на селективном измерении у-излучения от анализируемой пробы на у-спек-трометрах с NaJ (Т1)- или Се(Ь1)-детекторами с многоканальными анализаторами импульсов. Особенно большое развитие инструментальный метод получил с использованием Се(Ь1)-детектора с многоканальными анализаторами импульсов (512, 1024, 4096 каналами). Основное преимущество полупроводниковых детекторов — высокое разрешение фотопиков с близкой энергией. Разрешение для хорошего кристалла NaJ(Tl) размером 25 см X 3,5 см составляет 8—10% [84] в области y 1 Мэе и никогда не может быть меньше 6,6%. Разрешающая способность Се(Ь1)-детекторов составляет 1—3% [337]. Определение марганца этим методом в различных объектах приведено в табл. 16. На рис. 24 представлен у-спектр, полученный при инструментальном нейтроно-активационном определении примесей в H2SO4 [1026], а на рис. 25 — [c.98]


Смотреть страницы где упоминается термин Определение различных объектах: [c.234]    [c.135]    [c.63]    [c.76]    [c.103]   
Аналитическая химия лития (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ж- Различные определения

Определение объекта



© 2025 chem21.info Реклама на сайте