Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влага поверхностная

    Явление смачивания, приводящее к формированию краевого угла между жидкостью и твердой подложкой, лежит в основе механизмов, определяющих равновесие и кинетику влаги в пористых телах. Величина равновесного краевого угла 0о определяется полем поверхностных сил и энергией взаимодействия жидкости с твердой подложкой. Слабое взаимодействие ведет к несмачиванию, сильное —приводит к растеканию жидкости по поверхности, ее полному смачиванию. [c.210]


    Исследования состояния влаги в пористых телах давно уже привели к выводу об особом характере ее свойств вблизи поверхности частиц и о существовании так называемой связанной воды в дисперсных системах [1]. Отличия связанной воды от свободной объясняются перестройкой сетки межмолекулярных водородных связей в ее структуре под влиянием поля поверхностных сил. Моделирование структуры воды численными методами Монте-Карло и молекулярной динамики позволило получить некоторые количественные характеристики структурных изменений вблизи твердых поверхностей различной природы. При этом межмолекулярная водородная связь описывается различными потенциалами, правильность выбора которых проверяется путем сравнения рассчитанных и экспериментальных физических констант объемной воды. Поскольку численным методам посвящен ряд специальных статей этой монографии, остановимся только на основных результатах, важных для дальнейшего обсуждения. [c.7]

    При сушке кристаллических материалов происходит удаление поверхностной влаги, т. е. процесс протекает в первом периоде сушки, когда скорость процесса определяется только внешним диффузионным сопротивлением. При параллельном движении материала и сушильного агента температура влажного материала равна температуре мокрого термометра. В этом случае коэффициент массопередачи численно равен коэффициенту массоотдачи = Ро-Для барабанной сушилки коэффициент, массоотдачи может быть вычислен по эмпирическому уравнению [5]  [c.165]

    Их значения выбирают в зависимости от того, какую влагу (поверхностную или связанную) удаляют в процессе сушки (нижние значения выбирают для связанной влаги, а верхние — для поверхностной). [c.216]

    В некоторых случаях целесообразно применение двухступенчатой сушки. Так, например, первой ступенью может служить аэрофонтанная, циклонная или пневматическая сушилка. В этих сушилках поверхностная влага интенсивно удаляется за короткий промежуток времени, и теплоноситель может применяться при высокой начальной температуре. Второй ступенью может служить сушилка [c.653]

    В процессе сушки последовательно удаляются из материала влага поверхностная и заключенная в крупных ячейках, влага капиллярная и в последнюю очередь влага набухания. [c.240]

    Заболачивание суши — следствие определенного сочетания физико-географических условий, способствующих замедленному стоку вод при условии насыщения влагой поверхностных слоев почво-грунтов и частичной аккумуляции ее на земной поверхности. Вследствие этого в верхних слоях почво-грунтов создается постоянное или периодическое, но длительное переувлажнение, которое при- [c.410]


    Так, механизм действия хлорсодержащих соединений при трении заключается в образовании на металле пленок хлоридов железа или его хлорорганических солей [251, 276]. В присутствии влаги возможен гидролиз продуктов частичного разложения хлоридов с образованием хлор-иона и иона гидроксо-ния. В этом случае пассивирующие оксидные пленки РеО и РегОз теряют способность предохранять поверхностные слои металла от проникания в них хлор-ионов, в результате чего возникает коррозионное поражение металла и снижаются противоизносные свойства присадок. [c.262]

    Перенос влаги в дисперсных материалах — это сложный физико-химический процесс, включающий ряд поверхностных и внутрифазных явлений, характер которых, в свою очередь, в значительной мере определяется состоянием, свойствами, соотношением фаз, интенсивностью процессов массообмена [45, 214, 220]. Основные положения физики влагообмена в торфяных системах изложены в работах [214, 220]. Здесь мы рассмотрим лишь некоторые результаты исследований, выполненных с целью выяснения механизма явлений, ответственных за интенсивность переноса влаги и ионов в торфе, а также методов активного воздействия на эти процессы. Вначале будут рассмотрены межфаз- [c.69]

    Изотермический перенос влаги в капиллярно-пористых системах в общем случае представляет собой течение дисперсионной среды в виде капиллярной или пленочной влаги в промежутках и по поверхности частиц материала под действием градиента потенциала влаги. Диффузионная подвижность поровых растворов в пределах зоны действия поверхностных сил значительно меньше, чем в объеме. Снижение содержания связанной влаги в [c.74]

    Коэффициент массоотдачи определяют на основании эмпирических зависимостей при испарении поверхностной влаги он может быть рассчитан с помощью уравнения [7]  [c.170]

    Сначала определим высоту псевдоожиженного слоя, необходимую для испарения поверхностной влаги материала. В уравнении (Х.41) высота псевдоожиженного слоя к является той же самой величиной, что и рассчитанная по уравнению (Х.36). Принимая модель полного перемешивания материала в псевдоожиженном слое, можно считать температуру материала равной температуре мокрого термо- [c.170]

    Внешний вид водного раствора Водородный показатель (pH) водного раствора Температурные пределы, в которых происходит посветление водного раствора Поверхностное натяжение водного раствора Содержание влаги [c.305]

    Факторами, влияющими на процессы выпечки, являются также параметры печной среды — температура и влажность. Температура печной среды зависит от типа печи, вида выпекаемого хлеба (вид, материал, масса), зоны и находится в пределах 210—298 °С. Степень относительной влажности печной среды зависит от стадии выпечки. На первой стадии процесса влажность колеблется от 32 до 72%, тогда как иа второй стадии она составляет 19—43%. Степень увлажнения среды на первой стадии процесса должна быть больше, потому что интенсивность конденсации пара на поверхности тестовой заготовки выше. При этом имеет место поглощение влаги из печной среды рабочей камеры за счет конденсации пара на поверхности с последующей ее сорбцией в поверхностных слоях выпекаемого теста. Чем выше влажность среды, тем меньше потери в массе (упек). Необходимая влажность печной среды обеспечивается подачей пара или воды в количествах 70—150 кг/т продукта. Состав газовой среды меняется в зависимости от конструкции печи, вида и массы выпекаемого хлеба, температуры. Например, при выпечке городской булки массой 0,8 кг газовая среда и.меет следующий состав воздух — 64,8%, пары воды —35%, пары спирта — 0,2% [24], [c.50]

    Действие мощного внутреннего источника тепла приводит к тому, что скорость испарения во много раз превышает скорость переноса пара внутри тела. В результате этого возникает градиент общего давления, являющийся основной движущей силой переноса пара внутри тела. Поскольку температура внутренних слоев больше наружных, поток влаги вследствие термодиффузии направлен к поверхности тела, в отличие от других способов сушки, когда нагрев осуществляется через поверхность. Распределение же влагосодержа-ния имеет обратный характер (в поверхностных слоях больше, чем во внутренних) и создает аномальный (обратный) диффузионный поток влаги, вызванный градиентом концентрации. [c.166]

    После активации гранулы с целью удаления вредных соединений, главным образом ионов S0 , промывают водой, затем пропитывают поверхностно-активными веществами и направляют на сушку и прокалку для удаления воды из пор геля и завершения формирования оптимальной структуры алюмосиликатов. На стадии сушки содержание воды снижается с 90—92 до 8—10%, а объем частиц уменьшается в 7—8 раз. В результате прокаливания содержание влаги в катализаторе не превышает 1,0—1,5% катализатор приобретает высокую механическую прочность и термическую стабильность. [c.13]


    В ряде случаев поглощение одного вещества другим пе огра-ничииается поверхностным слоем, а происходит во всем объеме сорбента. Такое поглощение называют абсорбцией. Примером процесса абсорбции является растворение га ,ов в жидкостях. Поглощение одного вещества другим, сопровождающееся химическими реакциями, называют х е м о с о р б ц и е и. Так, поглощение аммиака или хлористого водорода водой, поглощение влаги и кис-лорода металлами с образованием оксидов и гидроксидов, поглощение диоксида углерода оксидом кальция — примеры хемосорб-циоиных процессов. Капиллярная конденсация состоит в ожижении паров в микропористых сорбентах. Она происходит вследствие того, что давление паров над вогнутым мениском ясид-кости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над [1лоской поверхностью жидкости при той же температуре. [c.320]

    Недостатки этого способа сушки 1) непригодность для высушивания толстых слоев материала, 2) неравномерность нагрева высушиваемого материала, связанная с тем, чтд, наряду с быстрым нагреванием поверхностного слоя, передача тепла во внутренние слои материала (за счет теплопроводности) происходит значительно медленней, 3) высокий расход энергии (1,5—2,5 квт-ч на 1 кг влаги). [c.799]

    Подвижность фракций кокса характеризуется также углом естественного откоса. Взаимная подвижность частиц кокса зависит от наличия сип сцепления между отдельными частицами и от коэффициента внутреннего трения. По мере удаления влаги уменьшаются сипы поверхностного сцепления между отдельными частицами. Это способствует повышению их подвижности и увеличению скорости высыпания кокса из бункеров. Методически угол естественного откоса ос определить несложно (рис. 10). В табл. 2 приведены значения углов естественного откоса фракций кокса в зависимости от влажности. С некоторым приближением угол естественного откоса можно принять равным углу внутреннего трения для фракций крупнее 10-6 мм. [c.32]

    Сжатый воздух после компримирования содержит не только масло, но и влагу, пыль, продукты коррозии. Поэтому он нуждается в очистке и осушке. Для отделения водяных и масляных капель используются специальные аппараты — водомаслоотделители. Существуют водомаслоотделители инерционного, поверхностного и инерционно-контактного типа. Инерционное отделение капель происходит вследствие поворотов и резкого изменения скорости воздушного потока. В аппаратах поверхностного типа воздушный поток пропускают через слой насадки с развитой поверхностью (гофрированные сетки, кольца Рашига и т. п.), в аппаратах инерционно-контактного тина воздушный поток проходит между зигзагообразными листами или жалюзями. [c.254]

    После добавления N0 концентрация N0 становится намного больше стационарной концентрации и k (N0) > кз (N02). Если бы было не больше, чем й, то уравнение (XIII.19.13) предполагало бы ингибирование, выраженное в форме + д, ( О Укз (N0) это, очевидно, не наблюдается и позволяет сделать приведенную выше оценку. Однако следует отметить, что система трудна для изучения, наблюдается значительная чувствительность к влаге, поверхностному катализу и адсорбционным эффектам. Поэтому данные для верхнего предела давления являются не очень надежными. [c.358]

    Влага поверхностная и макрокапилллярная может быть удалена механически, наиболее прочно связанная химическая — химическими способами или прокалива- [c.166]

    На основе этой лассивации стало возможным выпускать улучшенными некоторые типы счетчиков Гейгера. Другим примером могут служить прямые и изогнутые длинные трубы малого сечения из нержавеющей стали, отполированные изнутри. Благодаря устранению поверхностных слоев, загрязненных окислением и науглероживанием, трубы стали более устойчивыми против нормальной воды высокой температуры и высокого давления и против тяжелой воды. Лопатки паровых турбин и детали насосов, отлитые из высококачественных сталей, становятся устойчивее после электролитического глянцевания или полирования. Электролитически отполированная проволока высокого удельного сопротивления приобретает повышение стойкости против окисления при отсутствии влаги. Поверхностные слои листового материала из жаропрочных сплавов, употребляемого в турбостроении, часто показывают заметное обеднение хромом, вследствие чего сопротивляемость сухой коррозии уменьшается. Электролитическим полированием зона, бедная хромом, устраняется, и тем самым ограничивается опасность коррозии. [c.273]

    В процессе сушки матер,нала можно выделить три периода. Первый период характеризуется поверхностным испарением воды, содержащейся в материале. В течение этого периода сушки происходит максимальное поглощение тепла этот процесс подобен испарению со свободной поверхности воды. Испарившаяся вода поглощается газами и отводигся. В этом периоде на передачу тепла значительное влияние оказывает скорость течения газов или воздуха. После этого периода поверхность испарения влаги перемещается внутрь материала, на поверхности материала появляются сухие места, интенсивность сушки уменьшается. [c.244]

    Инерционные влагомаслоотделители подразделяют иа объемные, центробежные и поверхностные. Практически в них обычно сочетаются различные способы отделения жидкости от газа. В объемных влагомаслоотделителях отделение жидкости от потока осуществляется резким снижением скорости и изменением направления движения струи газа. Частицы жидкости, двигаясь по инерции, ударяются о стенку аппарата и стекают вниз. В иеитро-бежных влагомаслоотделителях в результате закручивания потока содержащиеся в газе частицы влаги и масла под действием возникающих центробежных сил отбрасывается к стенке. Закручивание потока осуществляется тангенциальным подводом газа и винтовыми каналами, установленными в потоке газа. [c.212]

    На рис. 9 изображена установка с водокольцевым вакуум-насосом. Отсасываемые пары поступают в барометрический конденсатор 5, В зависимости от свойств паров он может быть поверхностным или конденсатором смешения. Барометрический конденсатор (а при использовании поршневого компрессора — вакуум-ресивер) устанавливается на высоте, позволяющей свободно отводить кодденсирующуюся влагу без нарушения вакуума в системе. Эта так называемая барометрическая высота колеблется в пределах от 6 до 12 м. Сконденсировавшаяся вода стекает в барометрический сборник 7, откуда либо сливается в канализацию, либо откачивается для дальнейшего использования. [c.24]

    В процессе сушки химические реакции не протекают, а процесс помутнения, наблюдаемый во втором периоде, объясняется удалением влаги из пор шариков с заменой ее воздухом. Особенно важное значение имеет конец сушки (период пропарки), когда происходит диффузия водяного пара из внутренних пор шариков через капиллярные отверстия к поверхности. Жидкость при движении в частично обезвоженной структуре шариков оказывает расклинивающее действие на стенки капилляров, по которым опа перемещается капиллярное давление достигает десятков атмосфер. Столь значительные напряжения могут вызвать появление трещин, поэтому быстрая сушка в этот период опасна. Пропитка шариков перед сушкой растворами поверхностно-активных веществ, снижающими поверхностное натяжение выделяющейся жидкости, способствует снижению интенсивности капиллярного движения в пористой структуре шариков во время сушки и тем уменьшает напряжения. Применение растворов высокоэффективных нейтрализованных контактов вызывает незна- [c.66]

    В природных дисперсных материалах, в том числе и торфе, перенос влаги, как правило, происходит в неизотермических условиях. При этом процессы термовлагообмена в капиллярно-по-ристых системах протекают наиболее интенсивно, когда они находятся в трехфазном состоянии [218], отвечающем наибольшей подвижности влаги под действием градиентов температуры. При низком влагосодержании материала (11- 0) термическая подвижность влаги мала вследствие высокой энергии ее связи с твердой фазой. При двухфазном состоянии торфа в нем возможна лишь термическая циркуляция массы без ее перераспределения Б объеме йи 1йТ = 0). Кроме того, с увеличением и уменьшается поверхность раздела жидкость — газ, определяющая тер-мовлагоперенос под действием градиента поверхностного натяжения. Следовательно, наибольшая термическая подвижность дисперсионной среды соответствует такому остоянию материала, когда его поры не полностью заполнены влагой и в достаточной мере развита поверхность-раздела жидкость — газ [231]. Влага порового пространства в данном случае разделена короткими пленочными участками, от термической подвижности которых и зависят значения термоградиентного коэффициента б. [c.76]

    Охлаждение воздуха в поверхностном холодильнике изображается вертикалью В А, направленной вниз (см. рис. 21-4, а). Температура, отвечающая точке С пересечения вертикали с линией ф = 1, соответствует полному насыщению воздуха водяными парами в процессе охлаждения при х = onst и называется температурой точки росы. Охлаждение воздуха ниже точки росы сопровождается конденсацией из него влаги, т. е. осушкой воздуха. Осушение воздуха изображается линией i s, совпадающей с линией ф = 1 и направленной влево от точки росы до пересечения с изотермой, соответствующей конечной температуре охлаждения воздуха. [c.740]

    Существенной составной частью норовых растворов торфяных систем являются органические водорастворимые соединения, представляющие собой вещества, главным образом, углеводной и гуминовой природы. При влагообмене в торфе органические соединения мигрируют только по направлению ДПВ и ПРД и не переносятся термопотоком связанной влаги [239] . Это свидетельствует о том, что водорастворимые органические соединения торфа локализуются в дисперсионной среде, не связанной поверхностными силами. [c.79]

    Охлаждаемые объекты, оборудоваше и коммуникации холодильных установок, работающие три температурах ниже температуры среды, покрывают тепловой изоляцией, а также слоем паро- п гидроизоляционных материалов, предотвращающих проникновение в изоляцию влап (паров из окружающего воздуха, капельной влаги от поверхностного конденсата). Для изоляции используют эффективные илагостойкие теплоизоля- [c.181]

    Почва и грунт представляют собой капиллярнопористые, часто коллоидные системы, поры которых заполнены воздухом и влагой, прнчем вода с частицами почвы и грунта может быть связана физико-механически (в порах или в виде поверхностных пленок на стенках пор), физико-химически (в коллоидных образованиях и в адсорбированных пленках) и химически (в виде гидратированных химических соединений). Их можно рассматривать как твердые микропористые электролиты с очень большой микро- и макронеоднородностью строения и свойств и почти полным отсутствием механического перемешивания и конвекции их твердой основы. [c.384]

    Газы из экстрактора при 75 °С направляются в систему, абсорбции. В первом абсорбере, орошаемом 10—15% Н231Рб, улавливаются фтористые соединения и газы охлаждаюттся до 70 °С, содержание влаги в газе повышается с 260 до 270 г на 1 кг сухого воздуха. Этот газ поступает во второй абсорбер, орошаемый охлажденной Н251Рб. Газ из второго абсорбера при 45 °С подают вентиляторам в экстрактор, где воздушная смесь барботирует через поверхностный слой пульпы. В результате [c.231]

    Известно, что присадка меди в значител1>ной степени повышает коррозионную стойкость углеродистых сталей даже при не-больнюм ее содержании. Положительное влияние добавки меди иа устойчивость стали к атмосферной коррозии проявляется более заметно, если в состав стали, кроме меди, ввести Сг, Л1 или Р. Хром и алюминий, как известно, повышают склонгюсть стали к анодному пассивированию. Положительное влияние фосфора, по-виднмому, может быть объяснено переходом этого элемента из металла в поверхностный слой влаги и образованием защит- [c.182]

    При продувке воздухом влага из масла удаляется полностью, испарение влаги происходит главным образом в поверхностном слое масла, а воздух, поступая в газовое пространство резервуара, понижает там концентрацию водяных паров, что также способствует испарению влаги, с поверхности масла. Перемешивание масла воздухом ускоряет поступление микрокапель воды, содержащихся в масле, в зону испарения. Продувку масел воздухом ведут при 80 °С. С понижением температуры масла способность воздуха поглощать влагу резко падает и продолжительность обезвоживания значительно увеличивается, а при повышении температуры существенно возрастает вероятность вспенивания масла, что может привести к его выбросу из резервуара. Процесс обезвоживания масла можно ускорить, если снизить влагосодержание воздуха путем его предварительной осушки. Наиболее глубокую осушку воздуха обеспечивают адсорбционные методы. [c.132]

    В США выпускаются специальные конструкции барабанных сушилок прямого действия. Фирма Edw Renneburg and Sons o. изготовляет сушилки Dehydro-Mat. Сушилка такого типа является прямоточной. Она имеет конусный барабан, причем подача осуществляется со стороны меньшего диаметра конуса, где происходит быстрое выпаривание поверхностной влаги, а со стороны большого диаметра — выход для снижения скорости сушильного агента и увеличения времени пребывания материала в сушилке. [c.151]

    Поверхностная электропроводность (проводимость) стекла вызывается конденсацией влаги в порах поверХност иой пленки, имеющейся на каждом стекле, и растворением некоторых составных ч стей стекла в этой влаге. При помещении стекла во влажную атмосферу вначале наблюдается повышение проводимости, что обусловлено конденсацией влаги в порах пленки и образованием сплоишого жидкого елея. Вследствие сильного разбавления растворов начальные значения поверхностной проводимости мало зависят от состава стекла. Последующие процессы разрушения стекла и диффузия растворимых продуктов в жидкий слой вызывают повышение проводимости. Прн достижении насыщения свойства раствора определяются составом стекла каждый сорт имеет характерную поверхностную проводимость, указанную в таблице для температуры 20 С и относительной влажности воздуха 8в%. [c.328]

    Механически связаны с материалом поверхностная влага и влага, заполняющая крупные капилляры материала в результате смачивания. Эта влага (иногда называемая внешней) наименее прочна связана с материалом и наиболее легко уяаяяется из него. [c.733]


Смотреть страницы где упоминается термин Влага поверхностная: [c.20]    [c.292]    [c.277]    [c.571]    [c.164]    [c.442]    [c.237]    [c.648]    [c.799]    [c.26]    [c.333]   
Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.305 ]




ПОИСК







© 2025 chem21.info Реклама на сайте