Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

защищенных аминокислот получение

    По химическим принципам многочисленные методы получения производных аминокислот можно разделить на две большие группы. К первой группе относятся методы, при использовании которых молекула аминокислоты как таковая не затрагивается — ее функциональные группы блокируются так называемыми защитными группировками. Методикам защиты аминокислот посвящена обширная литература. Для второй группы методов характерно су-, щественное изменение молекулы аминокислоты, причем эта группа в свою очередь подразделяется на подгруппы. При химическом превращении одна или несколько функциональных групп аминокислоты замещаются на менее полярные группы или элиминируются в ходе направленной деградации молекулы аминокислоты. Пиролиз в этом смысле составляет исключение он приводит к полному разрушению исходного соединения.,  [c.310]


    ПОЛУЧЕНИЕ ПРОИЗВОДНЫХ АМИНОКИСЛОТ ПУТЕМ ЗАЩИТЫ ФУНКЦИОНАЛЬНЫХ ГРУПП [c.311]

    Получение Ы-ацильных производных используют в химии аминокислот, в основном, как метод защиты аминогруппы при проведении реакций, в ходе которых должна быть затронута только карбоксильная группа. [c.459]

    Хотя деструкция часто является нежелательной побочной реакцией, ее нередко проводят сознательно для частичного снижения степени полимеризации, чем облегчаются переработка и практическое использование полимеров. Например, в производстве лаков на основе эфиров целлюлозы, когда непосредственное растворение этих веществ дает слишком вязкие растворы, неудобные для нанесения покрытий, исходную целлюлозу подвергают предварительной деструкции. Частичная деструкция (пластикация) натурального каучука на вальцах облегчает его переработку в резиновые изделия. Реакция деструкции используется для установления химического строения полимеров, для получения ценных низкомолекулярных веществ нз природных полимеров (гидролитическая деструкция целлюлозы или крахмала в глюкозу, белков в аминокислоты), при синтезе привитых и блок-сополимеров и т. д. Изучение деструкции дает возможность установить, в каких условиях могут перерабатываться и эксплуатироваться полимеры оно позволяет разработать эффективные методы защиты полимеров от различные воздействий, найти способы получения полимеров, которые мало чувствительны к деструкции, и т. д. Знание механизма и закономерностей деструкции дает возможность усилить или ослабить ее по желанию в зависимости от поставленной задачи. [c.621]

    Для синтеза пептидов определенного строения обычно применяются не сами аминокислоты, а их производные. Такими активированными соединениями могут быть, например, хлорангидриды кислот. Функциональные группы, которые не должны участвовать в реакции, заранее защищают , а после получения нужного пептида защиту снимают  [c.186]

    Однако при нагревании пептиды могут разрушаться, а также в значительной степени претерпевать рацемизацию. Были исследованы и другие методы введения фталильной защиты например, обработка эфира аминокислоты о-карбоэтокси-тиобензойной кислотой и последующая реакция с водной НВг в уксусной -кислоте привела к получению Ы-фталиламинокислоты. Наиболее общий метод — [c.72]

    Карбобензоксипроизводные. — Следующей проблемой был синтез оптически активных пептидов путем образования связи между карбоксильной группой природной L-кислоты А и аминогруппой -кислоты Б. Задача заключается в умении защитить аминогруппу кислоты А при получении хлорангидридов для конденсации аминокислоты А с кислотой Б. Однако обычные ацильные группы непригодны в качестве защиты, так как при гидролитическом удалении защиты расщепляется и пептидная связь. [c.675]


    Более простой и значительно обновленный метод введения фтало-ильной защиты описал Нефкан (1961). М-Карбоэтоксифталимид I, полученный при действии этилового эфира хлоругольной кислоты в диметилформамиде на фталимид калия или фталимид и триэтиламин, реагирует с эфирами аминокислот в водном содовом растворе при комнатной температуре с образованием оптически чистых фталоильных производных IV (выход в некоторых случаях достигает 85—96%)  [c.678]

    К важнейшим отраслям биоиндустрии (рис. 1.1) следует отнести некоторые отрасли пищевой промышленности (широкомасштабное выращивание дрожжей, водорослей и бактерий для получения белков, аминокислот, витаминов, ферментов) сельское хозяйство (клонирование и селекция сортов растений, производство биоинсектицидов, выведение трансгенных животных и растений) фармацевтическую промышленность (разработка вакцин, синтез гормонов, антибиотиков, интерферонов, новых лекарственных препаратов) экологию — защиту окружающей среды и устранение загрязнений (очистка сточных вод, переработка хозяйственных отходов, изготовление компоста и др.). [c.7]

    Описанный способ не является универсально применимым, поэтому для защиты карбоксильной функции аминокислоты (или пептида), подлежащей-ацилированию, необходимо применять обратимо отщепляемые группировки. Для этой цели в первую очередь подходят различного типа эфиры. Амидные группы служат, как правило, достаточной защитой, если входят в состав растущего пептида. Для улучшения растворимости амидов пептидов в органических растворителях нужно блокировать амидную группу. Следует различать карбоксизашитные группы, которые по окончании синтеза пептида или пептидного фрагмента снимаются с регенерацией свободной карбоксильной группы и такие, которые после получения фрагмента либо прямо, либо после соответствующей обработки превращаются в группы, способные к дальнейшему аминолнзу. Эти защиты названы Вюншем [125] ка.к истинные, или потенциально активные, карбоксизащитные группы. Принята следующая классификация защитных групп  [c.116]

    В лаборатории Иванова в Институте биооргаиической химии им. М. В. Шемякина классическим методом, с использованием принципа максимальной защиты, осуществлен синтез а-бунгаротоксина — токсина нз яда тайваньской змеи Bungarus ти- ti in tus, состоящего нз 74 аминокислот и имеющего 5 дисульфидных мостиков. Полностью защищенный пептид был получен конденсацией фрагментов (1—19, 20—37, 38—53, 54—74) исключительно по остаткам глицина и пролина (рис. 2-52). [c.316]

    Основанный на этом принципе удобный метод получения пептидов [21, 170] состоит в кипячении с обратным холодильником N-защищенной аминокислоты или пептида с аминокислотой или хлоргидратом эфира пептида и избытком этоксиацетилена во влажном этилацетате, обычно в течение V2—2 час, до исчезновения нерастворимого хлоргидрата. Для защиты аминогруппы чаще всего применяется карбобензоксигруппа СеНвСНзОСО (СЬ) удовлетворительные результаты получены и в случае других производных [21, 170]. [c.164]

    Фталоиламинокислоты и фталоилпептиды обычно легко кристаллизуются. При введении фталоильной группы в некоторые оптически активные аминокислоты встретились трудности, а чувствительность этой группы к щелочной среде в известной мере затруднила применение этого метода защиты аминогрупп. Однако недавно были разработаны новые методы получения фталоиламинокислот в мягких условиях. Омыления эфиров пептидов в щелочной среде теперь можно избежать, если применять не только бензиловые эфиры, которые могут быть гидрированы, но и /ире/п-бутиловые эфиры, легко отщепляющиеся в кислой среде. [c.178]

    Основная проблема при синтезе пептида — проблема защиты аминогруппы. При взаимодействии карбоксильной группы одной аминокислоты и аминогруппы другой аминокислоты необходимо исключить возможность реакции между карбоксильной группой и аминогруппой молекул одной и той же аминокислоты. Например, при получении глицилаланина необходимо предотвращать одновременное образование глицилглицина. Реакцию можно направить в нужную сторону, если в одну из аминогрупп ввести заместитель, который сделает эту аминогруппу нереакционноспособной. Существует большое число подобных защитных групп из их числа ыеобходимо выбрать такую группу, которую можно в дальнейшем удалить без разрушения пептидных связей. [c.1051]

    После проведения гидролиза белка полученную смесь аминокислот необходимо разделить и количественно проанализировать. Метод газо-жидкостной хроматографии привлекает своей быстротой и чувствительностью, в особенности метод хромато-масс-спек-трометрии [10]. Разумеется, необходимо перевести свободные аминокислоты в более летучие для ГЖХ производные и в этом состоит трудность. Большинство известных методов включает две реакции образование сложного эфира по карбоксильной группе и ацилирование аминогруппы. Крайне важно, чтобы обе реакции протекали практически нацело, а образовавшиеся производные можно быЛ о бы разделить. Несколько сотен опубликованных за последние 25 лет работ свидетельствуют о трудностях, которые при этом возникают. Карбоксильную группу обычно переводят в сложноэфирную, используя простые радикалы от метила до пентила, в то время как для защиты амино- или иминогруппы популярны iV-трифтораце-тильная и JV-гептафтормасляная группы, так как они позволяют проводить ГЖХ-анализ с высокой чувствительностью при использовании детектора электронного захвата. Трудности связаны с ацилированием гуанидиновой группировки аргинина и термолабильностью производных цистеина из-за реакций -элиминации. Обсуждаемая техника и соответствующая литература коротко изложены в обзоре [11]. [c.260]


    Аналогично использованию многих уретановых производных для защиты аминогрупп существует целый набор простых эфиров, которые можно использовать для защиты карбоксильной группы. Так, бензиловые эфиры (расщепляемые гидрогенолизом илн сильными кислотами) и г/ ет-бутиловые эфиры (расщепляемые кислотной обработкой, но в более мягких условиях) нашли широкое применение для защиты С-терминальиых и боковых карбоксильных групп в производных аминокислот и пептидов. Подобным образом могут быть использованы некоторые содержащие заместители в кольце бензиловые и другие сложные эфиры, аналогичные урета-нам, приведенным в табл. 23.6.1. Эфиры с простыми алкилами (метил или этил), расщепляемые омылением, находят лишь ограниченное применение для защиты карбоксильной функции. Хотя производные пептидов со сложноэфирной группой на С-конце существенно более электрофильны, чем обычные алифатические сложные эфиры (благодаря электронооттягивающим свойствам а-кар-боксамидного заместителя), условия для их расщепления в щелочной среде слишком жестки для пептидов, за исключением самых простых. В общем случае они также непригодны для защиты карбоксильной функции в боковой группе (см. разд. 23.6.2.3) соответствующие уретаны в этих условиях продвергаются внутримолекулярной циклизации в производные гидантоина (см. разд. 23.6,2.1) вместо обычного гидролиза. Тем не менее метиловый и этиловый эфиры являются важными промежуточными продуктами для получения С-терминальных гидразидных производных для продолжения пептидного синтеза азидным методом (см. разд. 23.6.3.4). [c.380]

    Далее, чтобы пол> чить трипептид СЕЛ, необходимо удалить защиту Z с полученного производного и осуществить ацилирование продукта К-защи-щенным производным аминокислоты С (ZNH HR OX). Повторение такой последовательности операций (удаление защиты с Ы-конца и конденсация с К-защищенным производным следующей аминокислоты) ведет к последовательному формированию тетра-, пентапептида и, в конечном счете, л-звенной полипептидной цепи. Две несложные стадии на каждый шаг роста цепи представляются не слишком высокой ценой, так что кажется, что при доступньгх исходных соединениях построение сколь угодно длинной полипептидной молекулы с заданной последовательностью аминокислотных остатков является всего лишь вопросом достаточного терпения синтетиков. Однако (разумеется, есть однако ) в нашем схематическом изложении из двухстадийного цикла выпала одна техническая, но важная операция — выделение промежуточных олигопептидов из реакционных смесей. Что можно сказать об этой, на первый взгляд не принципиальной (и, во всяком случае, не стратегической) операции  [c.299]

    При синтезе пептидов, содержащих более двух аминокислотных остатков, у полученного защищённого дипептида необходимо освободить только N-концевую аминогруппу, удалив защиту лишь с М-конца дипептида. Таким образом, подбор за-ищтных групп должен соответствовать возможности удаления одной (временной) защитной гр>т1пы при полном сохранении всех остальных (постоянных) защитных групп. Планирование пептидного синтеза, включающее в себя подбор защитных групп, выбор метода конденсации и способа деблокирования, называется тактикой пептидного синтеза. Тактические задачи могут быть решены только после того, как разработана стратегия пептидного синтеза, т.е. намечены основные подходы к построению пептидной цепи. На современном этапе развития пептидного синтеза существуют две стратегии поогедо-вательное наращивание цепи, начиная с С-концевой аминокислоты, и фрагментная конденсация - получение коротких отрез- [c.64]

    С точки зрения пептидной химии кислота DMP-Pyi- является N-защищенной аминокислотой с фталидной защитой. Для активации ее карбоксильной группы нами использовались классические методы комбинаторной химии. Взаимодействием с хлористым тионилом получен соответствующий хлорангидрид. Весьма активный, практически не приводящий к рацемизации N-гидроксисукцинимидный эфир 4 синтезирован с помощью дициклогексилкарбодимида (D ). Эти промежуточные реагенты были выделены и охарактеризованы. Ди- и олигопептидные соединения 5, 6, представленные на схеме, синтезированы методом активированных эфиров [4]. [c.75]

    Защитные группы ацильного типа не используются в качестве временных защитных группировок из-за невозможности их удаления без расщепления пептидных связей (например, бензоильная или ацетильная группы) и легко происходящей рацемизации при получении активированных производных. Формильная и трифтор-ацетильиая группы (I—2) находят применение для защиты N -групп лизина. Фталильную (3) и тозильную (4) группы используют редко из-за жесткости условий их удаления (гидразинолизом и обработкой Na в жидком аммиаке соответственно). Для получения фталиламинокислот свободные аминокислоты ацилируют в водно-щелочном растворе при 20 С карбэтоксифталимидом  [c.130]

    Основные научные работы — в области химии пептидов. Разработал способы защиты, активирования и удаления защиты функциональных групп при синтезе пептидов. Предложил способы получения исходных производных аминокислот, Б частности способ создания Ы-карбоксипроизводных (совместно с М. Бергманном, [c.200]

    Способы получения. Фенолкарбоновые кислоты можно получить при помощи общих методов, например окислением метильной группы крезолов после защиты фенольного гидроксила (превращением в сульфат или фосфат), щелочным плавлением альдегидофенолов, трудно окисляющихся иным путем, или диазотировапием и последующим гидролизом ароматических аминокислот, например антраниловой кислоты. Особенно важным является метод непосредственного карбоксилирования фенолятов щелочных металлов. [c.172]

    Защита карбоксильной группы достигается путем получения метиловых, этиловых (легко гидролизуемых щелочами), /ирет-бутиловых (гидролизуемых к-тами, напр. F3 OOH или НВг в СН3СООН) или бензиловых и и-нитробензиловых эфиров (расщепляемых каталитич. гидрированием). В случае образования пептидной связи азидным методом, методом смешанных ангидридов или активированных эфиров (см. ниже) карбоксильная группа второй аминокислоты м. б. защищена путем образования соли. [c.15]

    Действие на аминокислоты хлорангидридов N-ацилирова иных аминокислот. По этому способу при получении хлорангидридов аминокислот (или пептидов) аминогруппа предварительно защищается ацилированием. Выбор защитной группы имеет решающее значение она должна легко отщепляться без одновременного гидролиза пептидной связи в полученном пептиде. Для защиты аминогруппы предлагались различные приемы. [c.684]

    Дано понятие биотехнологии. Изложены основы микробиологического получения белково-витаминных концентратов, органических кислот, аминокислот, липидов, ферментов, энгомопатогённых препаратов, бактериальных удобрений. Приведены сведения о сырье (углеводородах, отходах целлюлозно-бумажной и пищевой промышленности, сельского хозяйства), способах его подготовки для утилизации микроорганизмами, показаны принципы составления питательных сред. Описаны технологические схемы производства, используемое оборудование, правила его эксплуатации. Уделено внимание организации технического контроля за ходом процесса и качеством продукции. Рассмотрены вопросы очистки сточных вод и воздушных выбросов, охраны труда и защиты окружающей среды. [c.704]

    Амины. Для защиты аминогруппы ее ацилируют уксусным ИЛИ трифторуксусным ангидридом в растворе метанола при комнатной температуре. Для аминокислот и полипептидов эти реагенты часто неприменимы, так как приводят к побочным реакциям. Более мягким и дающим хорошие результаты методом получения ацильиых производных является взаимодействие эфиров аминокислот или пептидов с соответствующим эфиром Ы-оксисукцинимида. Ацили-рование этим реагентом проводят при комнатной температуре в водном или водно-диоксановом растворе бикарбоната натрия. Таким способом удается гладко проацилиро-вать все свободные аминогруппы. Исключение составляет [c.173]


Смотреть страницы где упоминается термин защищенных аминокислот получение: [c.187]    [c.299]    [c.679]    [c.469]    [c.470]    [c.71]    [c.146]    [c.271]    [c.350]    [c.375]    [c.320]    [c.66]    [c.461]    [c.2]    [c.161]    [c.461]    [c.15]    [c.242]    [c.398]    [c.665]   
Пептиды Том 2 (1969) -- [ c.88 , c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты защита

Аминокислоты получение



© 2025 chem21.info Реклама на сайте