Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винилацетат кинетика

    При изучении кинетики полимеризации винилацетата в разбавленном растворе в присутствии вновь синтезированного, ранее не испытанного инициатора А было также определено [c.279]

    Неравенством (5) можно пользоваться для определения максимального диаметра трубок. Покажем] это на примере процесса синтеза винилацетата из ацетилена и уксусной кислоты. Кинетика процесса описывается уравнением первого порядка [c.63]


    Использование поливинилацетата-1-С при изучении реакций введения боковых цепей в поливинилацетаты (кинетика и размеры) описано Бевингтоном [7]. Поливинилацетат гидролизуют до поливинилового спирта и затем вновь ацилируют смесью уксусного ангидрида и ацетата-1- натрия в присутствии пиридина [см. синтез бис-(уксусного-1-С )-ангидрида]. Механизм ступенчатой полимеризации винилацетата в ароматических растворителях изучен Штокмайером [9]. Бензол-С входит в состав низкомолекулярного поливинилацетата (в среднем 20 молекул бензола на молекулу полимера). [c.561]

    К выводу о протекании процесса безэмульгаторной полимеризации в частицах пришли также Дан и Тэйлор при изучении кинетики полимеризации. винилацетата [21] в водном растворе. Они показали, что для одной и той же скорости образования радикалов скорость полимеризации при инициировании персульфатом калия в 6 раз больше скорости прп инициировании перекисью водорода. Это связано с тем, что при инициировании персульфатом калия образуются устойчивые частицы, а при инициировании перекисью водорода полимер выпадает в виде набухшего геля. [c.112]

Рис. 30. Кинетика удаления метилбутилкетона из пленок сополимера винилхлорида с винилацетатом различной толщины. Рис. 30. <a href="/info/1557444">Кинетика удаления</a> метилбутилкетона из <a href="/info/458448">пленок сополимера винилхлорида</a> с <a href="/info/1587583">винилацетатом различной</a> толщины.
    В табл. 14.1 представлена зависимость константы равновесия и равновесного выхода винилацетата от температуры. Из-за резкого понижения выхода с увеличением температуры процесс следует проводить при возможно более низких температурах. На практике процесс проводят при температуре 230 °С, что обусловлено кинетикой реакции. [c.470]

    Кинетика распада перекиси бензоила впервые была исследована в работе Каменской и Медведева [33], которые нашли, что эта реакция протекает приблизительно по первому порядку и с разной скоростью в бензоле и в смеси бензола с винилацетатом. Позже кинетика распада перекиси бензоила в различных условиях сделалась предметом подробных исследований [34—44]. Полученные при этом результаты в основном сводятся к следуюш ему. [c.42]


    Принципиально, условия успешного проведения дисперсионной полимеризации совершенно ясны. Основными требованиями являются присутствие инертного растворителя, растворяющего мономер, но осаждающего полимер, и полимерного стабилизатора, стабилизирующего формирующиеся полимерные частицы за счет образования защитного слоя на их поверхности. Если эти условия выполнены, то полимерные дисперсии можно получать по любому механизму полимеризации свободно-радикальному, ионному, поликонденсационному, с раскрытием цикла и т. д. Поскольку основная область практического применения —это радикальная дисперсионная полимеризация, постольку детальные исследования кинетики и механизма процесса ограничивались в основном этим направлением, хотя многие из найденных закономерностей имеют более широкую область приложения. Именно поэтому по большей части мы рассматриваем свободно-радикальную дисперсионную полимеризацию виниловых и акриловых мономеров, таких, как винилацетат, винилхлорид, метилметакрилат и акрилонитрил, главным образом в алифатических углеводородах. Вместе с тем кратко обсуждаются и другие типы дисперсионной полимеризации, которые, однако, не изучены столь же детально. [c.132]

    Для выяснения кинетики дисперсионной полимеризации использовали два типа мономеров. В качестве первых выступали метилметакрилат и винилацетат, образующие полностью растворимый в своем мономере полимер. Соответственно, поскольку их растворяли в алифатическом углеводородном разбавителе (в котором полимеры, конечно, нерастворимы), общая растворимость полимера в смеси разбавителя убывала по мере расходования мономера в процессе полимеризации. Второй тип мономеров представляли акрилонитрил и винилхлорид, образующие нерастворимые в своем мономере полимеры, так что растворяющая способность смеси разбавителя и мономера оставалась существенно постоянной в течение полимеризационного процесса. [c.208]

    Акрилонитрил. Менее обширные данные по кинетике дисперсионной полимеризации акрилонитрила [104] показали некоторое отличие его поведения от поведения винилацетата или метилметакрилата. Для любого данного значения начальной концентрации мономера, поведение процесса в начале реакции отвечает уравнению (IV.74) (специальный случай а, V — малы), т. е. скорость полимеризации пропорциональна корню квадратному из концентрации образовавшегося полимера. Однако для более широкого круга начальных значений концентрации мономера, процесс полимеризации развивается в соответствии с уравнением (IV.75) (специальный случай а — велико), согласно которому скорость конверсии обратно пропорциональна корню квадратному из начальной концентрации мономера. Эти результаты могут быть объяснены в предположении преимущественного распределения мономера в полимерной фазе по мере образования частиц. Вначале количество мономера в частицах полимера ограничено количеством образовавшегося полимера и скорость полимеризации пропорциональна корню квадратному из концентрации полимера [уравнение (IV.74)]. Однако по достижении определенной глубины конверсии, количество мономера в разбавителе очень мало и объемная доля частиц ограничена только общим содержанием мономера, что обусловливает кинетическое поведение, соответствующее уравнению (IV.75). На эти эффекты накладывается, конечно, ускорение процесса, обусловленное гель-эффектом, величина которого сравнима с ускорением, возникающим при полимеризации метилметакрилата. [c.211]

    Исследование процесса перераспределения неионогенных ПАВ в системе винилацетат — вода, а также в системе стирол — вода, обусловливающего квазиспонтанное эмульгирование, проведенное С. А. Никитиной [34], показало, что эти явления обязательно имеют место и поэтому не могут не учитываться в процессе эмульсионной полимеризации. Образование микроэмульсии на межфазной поверхности в процессе квазиспонтанного эмульгирования должно оказывать сильное влияние на кинетику процесса и дисперс- [c.30]

    Еще одно подтверждение влияния степени свернутости макромолекулярного клубка на реакционную способность функциональных групп было получено при сопоставлении кинетики гидролиза сополимеров винилацетата с виниловым спиртом с разным содержанием гидроксильных групп [29]. Как видно из рисунка 1.4, с увеличением содержания гидроксильных групп скорость гидролиза возрастает, и при содержании звеньев поливинилового спирта в сополимере около 20% кинетические кривые приобретают линейный характер. При гидролизе поливинилацетата по мере накопления гидроксильных групп в цепи кинетика реакции тоже меняется, и кинетические кривые становятся линейными при тех же 20% превращения. Константы скорости, рассчитанные по наклону линейных участков кинетических кривых, оказываются близкими к значениям констант скорости гидролиза низкомолекулярных эфиров (рис. 1.3, а). Очевидно, при 20%-ном содержании гидроксильных групп макромолекулярные клубки разворачиваются настолько, [c.44]


    Исследование кинетики реакции перекиси бензоила (ПБ) с триэтанол амином (ТЭА) интересно, во-первых, потому, что в литературе вообще отсутствуют данные относительно кинетики окисления аминоспиртов перекисью бензоила в неводных средах. Во-вторых, системы ПБ—аминоспирты (в особенности система ПБ—ТЭА) проявили себя эффективными инициаторами полимеризации винилацетата в метанольном растворе, как это было установлено в нашей лаборатории. [c.270]

    Конике и Смете [42] исследовали кинетику полимеризации метилметакрилата, винилацетата и винилхлорида в присутствии перекиси бензоила и установили, что полимеризация первого мономера протекает по реакции первого порядка, полимеризация второго и третьего — по порядку 3/2. [c.69]

    Абкин [203] рассмотрел литературные данные о кинетике совместной полимеризации и показал, что реакционная способность радикалов возрастает в ряду а-метилстирол, бутадиен, изопрен, стирол, метилметакрилат, винилцианид, винилиденхлорид, винилхлорид, метилакрилат, винилацетат. [c.71]

    По данным теплот смешения вычислена плотность энергии когезии поливинилацетата, равная 77,6 кал моль, а также установлено, что характеристическая вязкость одного и того-же полимера в различных растворителях будет тем больше, чем меньше теплота смешения ДЯ этого полимера с растворителем [584, 585]. Изучались также адиабатическое сжатие растворов поливинилацетата [586], сорбция паров воды и органических растворителей поливинилацетатом [587, 588], кинетика гидратации сополимера винилацетата с малеиновым ангидридом [589], молярные объемы воды в поливинилацетате [590] и другие свойства растворов поливинилацетата [77, 383, 591 — 597]. [c.364]

    Кинетика сополимеризации винилацетата с аллилацетатом исследовалась японскими авторами [287]. Отношение реакционной способности мономеров оказалось равным 0,7 1. [c.162]

    Изучая роль кислорода в полимеризации винильных групп Барнес, Элофсон и Джонс [292] определили с помощью полярографического метода поведение пероксидов, получающихся в процессе полимеризации метилметакрилата, стирола и винилацетата. Богданецкий и Экснер [293] провели полярографическое изучение продуктов автоокисления метилметакрилата под. влиянием кислорода воздуха на фоне 0,3 М Li l в смеси бензол метанол 1 1 были обнаружены две волны первая — пероксида метакрилового эфира, вторая — метилового эфира пи-ровиноградной кислоты. При этом полярографический метод дает возможность обнаружить следы пероксида, которые не обнаруживаются другими методами. Полярографическое определение пероксида было использовано авторами для изучения кинетики его распада в щелочной среде и для контроля процесса очистки мономера от пероксидов адсорбцией на оксиде алюминия. Изучен также процесс автоокисления бутилметакрилата и показано, что пероксидный продукт представляет собой сополимер бутилметакрилата с кислородом при мольном соотношении 1 1, который при нагревании распадается на формальдегид и эфир пировиноградной кислоты. Кинетику распада этого пероксида изучали по изменению волны эфира пировиноградной кислоты в течение всего процесса. [c.196]

Рис. 176. Кинетика сополимеризации натурального каучука с 20 (/) и 9% винилацетата (2) в присутствии 2% триэтаиоламина (ТЭА). Рис. 176. <a href="/info/548032">Кинетика сополимеризации</a> <a href="/info/540">натурального каучука</a> с 20 (/) и 9% винилацетата (2) в присутствии 2% триэтаиоламина (ТЭА).
    Вследствие чувствительности вииилацетатного радикала к агентам передачи цепи или замедлителям была исследована полимеризация винилкаприната, характеризующегося близкими к винил-ацетату значениями констз нт передачи цепи, но незначительной растворимостью в воде. При этом было показано, что скорость процесса подчиняется той же зависимости от концентрации эмульгатора, что и для стирола. С другой стороны, после того как растворимость стирола в водной фазе была приближена к растворимости в ней винилацетата добавлением метанола, оказалось, что скорость полимеризации меньше зависит от концентрации эмульгатора. Отсюда делается вывод, что отклонения кинетики эмульсионной полимеризации винилацетата от кинетики полимеризации стирола обусловлены только повышенной растворимостью первого-в воде. [c.87]

    Применяя эту теорию, названную им равновесной теорией , к опубликованным данным по кинетике полимеризации винилацетата, Хэрриот считает, что в большинстве случаев она подтверждается. [c.110]

    При изучении кинетики полимеризации винилацетата и метилакрилата, инициираванной персульфатом калия, при их концентрациях ниже иасыщения водного раствора показано [13, 93, 116], [c.118]

    Отмечено [117], что при повышении концентрации гексадецилсульфата натрия свыше ККМ скорость полимеризации винилацетата остается неизменной. Нэтчи и др. [ 117] рассматрнвают мицеллы лишь как резервуары, поставляющие молекулы эмульгатора, которые адсорбируются олигомерами, зародышами частиц и растущими частицами. Радикалы не взаимодействуют с молекулами эмульгатора, иначе увеличение концентрации последнего повлияло бы на кинетику процесса. [c.119]

    Экспериментальные данные по внутримолекулярному распределению скудны вследствие трудности определения микроструктуры полимерной цепи. Гиндин [12] показал, что теоретический расчет внутримолекулярного распределения для совместного полимера бутадиена с винилциа-нидом и бутадиена с а-метилвинилцианидом находится в качественном, а частично — в количественном согласии с опытными данными по структуре этих полимеров, полученных Алексеевой [13] методом озонолиза. Были деланы попытки исследовать микроструктуру совместных полимеров хлористого винила и винилацетата методом дехлорирования [14, 15]. При этом были получены противоречивые данные, по-видимому, связанные со сложным химизмом и кинетикой процесса дехлорирования этих совместных полимеров. [c.141]

    Очень специфический случай ингибирования солями закисного железа уже упомршался на стр. 275. Соли окисного железа (действующие по общему механизму) также замедляют или ингибируют полимеризацию виниловых мономеров как в водных [111], так и в неводных [37, ИЗ] растворах. Наблюдаемый тип кинетического поведения зависит от сродства к электрону заместителей в мономере. Например, при полимеризации стирола и винилацетата в растворе N, N-диметилформа-мида соли окисного железа являются ингибиторами, в то время как для акрилонитрила, метакрилонитрила, метилакрилата и метилметакрилата они служат только замедлителями [37, 114]. Подробное рассмотрение кинетики таких реакций дано ниже их применение для измерения скоростей инициирования рассмотрено в гл. 2 (стр. 72). [c.282]

    Математическая обработка данных, полученных при изучении сшивания в этих системах довольно сложна, если не пользоваться упрощающими допущениями. Фокс и Греч [35] дали примерный анализ кинетики привитой иолимеризации и сделали вывод, что, наиболее вероятно, гелеобразование при привитой сополимеризации происходит в случае применения стирола. (Этот вывод основан только на известных кинетических константах во всех случаях принимается обрыв в результате соединения радикалов.) Предполагалось также, что возможно гелеобразование путем передачи цепи при гомополимеризации в массе метилакрилата и винилацетата этот вывод, конечно, неверен, если обрыв происходит только путем диспропорционирования. Бемфорд и Томпа [14] предприняли тщательное изучение простой привитой по,тимеризации. Схема реакций такая же, как (7.1) (при 8 = 0) и (7.11) с обрывом в результате соединения радикалов было принято, что концентрация мономера остается постоянной и что в начале реакции полимера нет. Описанным методом были рассчитаны некоторые моменты молекулярно-весового распределения. По-видимому, Qo и QJ остаются конечными при всех условиях, а моменты высшего порядка содержат множитель [c.343]

    Исследование кинетики окислительного ацетоксидирования этилена в винилацетат позволило предложить механизм реакции, согласно которому в преддимитирующих стадиях происходит комплекоо-образование кластера с молекулами всех трех субстратов -О2, [c.40]

    Кинетика прививки в системе политетрафторэтилен — винилацетат изучена Рестано и Ридом [16]. Пленки политетрафторэтилена погружали в винилацетат, облучали у-лучами (15—460 крад час). Процесс прививки [c.417]

    При получении высших виниловых эфиров путем ацидолиза с применением жирных кислот с длинной цепью и винилацетата можно широко использовать метод газовой хроматографии. При изучении кинетики реакций было обнаружено образование побочных продуктов, в том числе этилидендиацетата и этиленгли-кольдиацетата. [c.519]

    Переходя к изучению кинетики упомянутых реакций в смешанных бинарных растворителях, мы установили, что кинетика их не меняется также и в смешанных растворителях, например при проведении реакции перекиси бензоила г диэтиламином в следующих бинарных смесях н-гексан — бензол, н-гексан — винилацетат, н-гек-саи — стирол, н-гексан — пиридин, циклогексан — ниридин, циклогексан— бензол, бензол — пиридин и винилацетат — пиридин. Кинетика реакции перекиси бензоила с триэтаноламином также не меняется в бинарных растворителях бензол — пиридин, бензол — этанол, винилацетат — этанол и эфир — ниридин . [c.273]

    Термисторный метод определения констант скоростей был применен при исследовании кинетики фотополимеризации винилацетата, сенсибилизированной динитрилом азо-бис-циклогек-санкарбоновой кислоты [143]. [c.148]

    Шлык [182J исследовал кинетику фотополимеризации винилацетата в блоке и растворителях — хлороформе и бензоле. Полимеризация проводилась в присутствии перекиси бензоила и облучении ультрафиолетовым светом с длиной волны 360—365 ммк при 17—18,5°. Скорость полимеризации пропорциональна концентрации перекиси и проходит через максимум при разбавлении мономера растворителем скорость полимеризации падает. [c.150]

    Мияма [625—627] исследовал (при помощи термистора) кинетику фотополимеризацни винилацетата с азо-бис-циклогексан-карбоновой кислотой, наблюдая повышение температуры реакционной смеси в адиабатических условиях (чувствительность установки составляла 0,6 10" °). Найдено, что значение отношений констант роста и обрыва цепей к /ко для винилацетата в процессе полимеризации медленно увеличивается от 1,8 (при глубине превращения 0%) до 9,55 (глубина превращения 50%). По достижении превращения выше 50% наблюдается резкое возрастание отношения констант (64,2 при 71,1%). Приняв, что скорость инициирования равна удвоенной скорости распада сенсибилизатора, автор рассчитал константы скоростей реакций роста цепей кр=ЪЪ ё л моль сек) и их обрыва (йо=5,118- 10 л/жоль-се/с). Определены также энергии активации реакций роста и обрыва Ер и Ео). Ер остается постоянной (3,4—3,9 ккал1моль) вплоть до глубины превращения 40—50%,затем быстро увеличивается и при глубине превращения 71,1 % достигает Ъ,О ккал/моль. Ео медленно увеличивается до 2,2 ккал моль (при 20—30% превращения), а затем резко возрастает до 16,8 ккал моль, что соответствует 71,1% превращения. [c.455]

    Исследуя кинетику фотополимеризацни винилацетата дилатометрическим методом при 25° (сенсибилизатор — динитрил-азо-днциклогексанкарбоновой кислоты), Бенгоу [628—630] нашел, что стационарная скорость устанавливается примерно через 2 сек. после начала реакции. На основании полученных данных рассчитана величина отношения констант скоростей реакции роста и обрыва цепей кр ко— 2,9 10" . Он же определил значение величины теплоты (АЯ) реакции полимеризации ДЯ = =20,1 + 1,0 ккал моль. [c.455]

    Кучера [646] описывает дилатометрический метод оценки активности винилацетата. Мацумото и Маэда [647—650] исследовали кинетику полимеризации винилацетата в различных растворителях в присутствии перекиси бензоила и азо-бис-изобутиронитрила. Они нашли, что константа передачи цепи через мономер равна 1,9 10" и через перекись бензоила — 0,09. Константа передачи цепи через растворители, умноженная на 10 ( 10 ), равна для метил ацетата—1,6, этилацетата — 2,6, про-пилацетата — 3,4, изопропилацетата — 3,1, трет, бутилацетата — 6,2, метилпропионата — 23, метилбутирата — 18, метилизобу-тирата — 58 и диметилоксалата — 2,0. [c.456]

    Исследованием кинетики полимеризации винилацетата в растворе метнлацетата в присутствии перекиси бензоила занимались Имаи и другие исследователи [658, 659]. [c.457]


Библиография для Винилацетат кинетика: [c.350]   
Смотреть страницы где упоминается термин Винилацетат кинетика: [c.220]    [c.122]    [c.223]    [c.131]    [c.135]    [c.297]    [c.207]    [c.294]    [c.348]    [c.131]    [c.135]   
Поливиниловый спирт и его производные Том 2 (1960) -- [ c.100 , c.111 , c.126 ]

Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.142 , c.145 , c.250 , c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Винилацетат



© 2025 chem21.info Реклама на сайте