Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ растворителей и мономеров

    В заключение отметим, что в настоящее время методы анализа летучих компонентов в полимерных системах разработаны достаточно подробно и газовая хроматография может рассматриваться как основной метод анализа растворителей, мономеров, пластификаторов в полимерах. Главной задачей в этой области, по нашему мнению, являются выбор оптимальных методов и разработка стандартных методик газо-хроматографического анализа. [c.145]


    Ход анализа усложняется с повышением сложности состава полимеров. Простые операции по разделению (экстракция различными растворителями и т. д.) часто способствуют упрош,ению хода анализа, особенно при анализе остатков мономеров, пластификаторов или различных наполнителей. [c.418]

    Как и в случае анализа мономеров, для анализа растворителей используются большей частью методы газо-жидкостной хроматографии, однако для этой цели применяются и такие широко известные методы, как титрование бромид-броматным раствором, определение ацетиленовых соединений взаимодействием со спиртовым раствором нитрата серебра и колориметрическое определение карбонильных соединений. [c.33]

    Таким образом, график зависимости ПОР от величины отношения [растворитель]/[мономер] при постоянном значении [кат.] должен дать прямую линию с наклоном Ст. Некоторые из таких графиков представлены [20] на рис. 94. Анализ изменений отрезка, отсекаемого на оси ординат при изменении [кат.], дает константу скорости передачи цепи мономером. [c.403]

    В СКВ автоматики в нефтепереработке и нефтехимии Кепке и Соколиным [61, 62] разработан промышленный газовый хроматограф, специально предназначенный для анализа летучих мономеров в полимерных системах. В этом приборе для удаления нелетучего растворителя применяется промывка устройства для ввода пробы жидким растворителем. Хроматограф был успешно применен для определения содержания мономеров этилена и пропилена в исходной шихте и полимеризате в производстве синтетического каучука СКЭП и определения дивинила в шихте в производстве каучука СКД. [c.120]

    Пиролитические ячейки трубчатого типа (см., например, [48]) также могут быть использованы для онределения содержания как ингибиторов, так и более легких продуктов (например, летучих растворителей, мономеров и т. п.). В методиках этого типа лодочка с образцом полимера быстро (на необходимое время) вносится в нагретую до заданной температуры горячую зону трубчатого реактора. Если определяемые компоненты переходят в газовую фазу в течение 10—20 сек, то нагрев производится в потоке газа-носителя, а аппаратура может быть использована непосредственно, без каких-либо изменений. Если же процесс выделения летучих компонентов при выбранной температуре требует длительного времени, то для его согласования с последующим газо-хроматографическим анализом необходимо либо отключить пиролитическую камеру на требуемое время от потока газа-носителя и провести процесс перехода летучих компонентов из полимера в газ в статических условиях, либо ввести в хроматографическую схему между пиролизером и хроматографической колонкой ловушку для улавливания летучих компонентов из потока газа-носителя. После повышения температуры ловушки летучие примеси узкой зоной поступают в потоке газа-носителя для разделения в хроматографическую колонку. [c.122]


    К аналитич. химии полимеров можно отнести также анализ чистоты мономеров, катализаторов, ингибиторов полимеризации, растворителей, пластификаторов, стабилизаторов и т. д. [c.67]

    Анализ растворителей и мономеров [c.40]

    По газохроматографическому анализу растворителей и относительно низкокипящих мономеров, температура кипения которых не превышает 180 °С, имеется обширная литература. Величины удерживания этих веществ приведены в ряде справочников и монографий Значительно менее подробно разработаны ме- [c.40]

    К основным областям использования пиролитической газовой хроматографии относятся качественная идентификация полимеров путем сравнения пирограмм и масс-спектров исследуемых и известных полимеров, определение стереорегулярности полимеров, количественный анализ сополимеров и их структур, т. е. определение различий между статистическими и блок-сополимерами установление отличий полимерных смесей от истинных сополимеров, изучение термостойкости и деструкции полимеров, кинетики деструкции их, в том числе и термоокислительной деструкции, оценка остаточных количеств мономеров, растворителя, добавок и сорбированной воды в полимерах, идентификация растворителей, содержащихся в клеях и растворах покрытий, изучение процесса сшивания в полимерах. [c.200]

    Термодинамические параметры процесса являются функциями лишь исходного и конечного состояний реакционной системы, т. е. могут быть найдены из анализа свойств мономера и полимера (и растворителей, если реакция идет в растворе), и не зависят от механизма данного процесса, применяемых катализаторов и т. д. В свою очередь, кинетические параметры существенно зависят и от механизма процесса, и от природы и состояния катализатора и других факторов. [c.64]

    Материал разделен на главы, каждая из которых посвящена определенному полимеру или группе полимеров, подробно обсуждаются также сополимеры и тройные полимеры. Помимо этого в конце каждой главы или раздела рассматривается анализ неполимерных компонентов, случайно попадающих в полимеры (вода, растворители, мономеры, остатки катализатора и др.) или же специально добавляемых в них (антиоксиданты, пластификаторы и т. п.). [c.7]

    Полимеры представляют собой порошки коричневого цвета. Они индифферентны к концентрированным серной и муравьиной кислотам, смеси толуол диоксан этанол=1 1 1 (растворитель мономеров) и другим органическим растворителям (см. табл. 20). Их нерастворимость — следствие сетчатого строения. По данным рентгеноструктурного анализа, полученные полимеры представляют собой практически аморфные вещества. [c.209]

    Газожидкостная хроматография представляет собой очень ценный метод анализа низкомолекулярных соединений, например мономеров, различного вида добавок, растворителей. Трудность использования этого метода для анализа полимеров заключается в том, что большинство макромолекул даже при повышенных температурах имеют слишком низкое давление паров, чтобы проходить через колонки такого типа. Частично эту проблему удается решить путем применения пиролитической газовой хроматографии (разд. 34.15). [c.15]

    Растворы полимеров. Можно пользоваться прямым газохроматографическим анализом на летучие компоненты, вводя растворы полимеров в хроматограф непосредственно или после переосаждения метиловым спиртом. Такие методики применяются давно и в ряде стран признаны официально [71—73]. Существенный их недостаток состоит в необходимости частой смены хроматографических колонок и чистки испарителей, загрязняемых полимерами. Непосредственное хроматографирование растворов иногда оказывается невозможным из-за наложения широких пиков растворителей на пики примесей, причем дозирование растворов полимеров затрудняется их высокой вязкостью и адгезией. В паровой фазе эти осложнения отпадают, а соотношение пиков растворителей и летучих примесей оказывается гораздо более благоприятным, особенно если растворитель имеет невысокое давление паров. Решающим критерием при выборе растворителя является его растворяющая способность по отношению к полимеру, при этом предпочтительны высококипящие легко очищаемые жидкости с большими, чем у анализируемых примесей, временами удерживания. Чаще всего применяются в качестве растворителей диметилацетамид и диметилформамид (табл. 3.4). Предел чувствительности таких определений очень сильно зависит от летучести примесей. Для газообразных мономеров (винилхлорида, бутадиена) в указанных органических растворителях он достигает [c.139]

    В первом приближении можно считать, что кипение идет при постоянной температуре, тем более, что для ряда процессов теплоты испарения растворителя вполне хватает до конца полимеризации (исходная концентрация мономера [М]о=1,5 3,0 моль/л в хлорированном растворителе). Полный анализ теплового баланса рассмотрен в [20]. Температура реакции повышается, пока не достигнет Т п а затем процесс идет при практически постоянной температуре до тех пор, пока кипение не прекратится после выкипания всего растворителя и/или определенной части мономера. При полном переходе кипящей жидкости в пар температура в системе снова начинает сильно возрастать вследствие полимеризации либо жидкого (если мономер в системе не кипит), либо газообразного мономера [20, 2Г. [c.160]


    Анализ стирола с помощью инфракрасных и ультрафиолетовых лучей. Методы анализа стирола с помощью инфракрасных и ультрафиолетовых лучей благодаря их чрезвычайной чувствительности очень важны для анализа смесей, содержащих небольшие количества мономера [21]. Любой из этих методов может быть использован для обнаруживания паров стирола в воздухе улавливанием мономера в поглотителе, содержащем подходящий растворитель. Для анализа очищенного стирола эти методы не применяются. [c.162]

    К таким особенностям относится прежде всего возможность определения летучих компонентов в объектах, 11р мой ввод которых в газовый хроматограф невозможен или нецелесообразен из-за недостаточной чувствительности детектирующих устройств, присутствия легко разлагающихся веществ, нежелательности загрязнения колонки нелетучим остатком или опасности нарушения существующего в системе химического равновесия. Примером могут служить широко известные в настоящее время методы анализа крови на содержание алкоголя и ядовитых летучих веществ, эффективность и официальное признание которых способствовали развитию техники АРП. Сюда же относятся методы определения остаточных мономеров и растворителей в полимерных материалах, также принятые в качестве стандартных. Проблема санитарно-гигиенического контроля полимерных материалов методом газовой экстракции стала объектом пристального внимания и получила особую актуальность в связи с обнаружением канцерогенных свойств винилхлорида и необходимостью жесткого контроля его содержания в многочисленных изделиях широкого потребления. [c.9]

    Парофазный анализ вредных летучих примесей пищевых продуктов обычно проводится для контроля возможности попадания остаточных мономеров и растворителей из полимерных упаковочных материалов и тары. [c.155]

    Этот метод получил наибольшее распространение при определении остаточного мономера в полимерных пленках, предназначенных для упаковки пищевых продуктов, в порошках поливинилхлорида рыхлой структуры [285, 286]. Однако к образцам суспензионного поливинилхлорида, содержащим крупные монолитные зоны, этот метод уже неприменим [285], В случае крупных гранул равновесие твердая фаза — газ устанавливается даже при высоких температурах слишком долго. Например, остаточный стирол в гранулах полистирола не достигает равновесия с газовой фазой даже через 20 ч выдерживания при 75°С [287]. Растворный метод имеет более широкое применение, поскольку равновесие в этом случае устанавливается быстрее и упрощается процесс калибровки. При выборе растворителя кроме растворяющей способности по отношению к анализируемому полимеру учитывается легкость очистки растворителя. Предпочтительными для парофазного анализа являются высококипящие растворители, имеющие большие, чем у остаточного мономера, времена удерживания. Чаще всего в качестве растворителей полимеров используют диметилацет-амид (ДМАА), диметилформамид (ДМФА), диметилсульфок-спд (ДМСО). Для ускорения анализа растворитель и другие высококипящие примеси удаляют из колонки обратной продувкой. [c.266]

    И, наконец, еще одним недостатком холодного ввода пробы непосредственно в колонку является ограниченная применимость этого метода к пробам, содержащим брльщие количества инди-видугильных соединений. Количественное определение составляющих смеси, элюирующихся до макрокомпонентов, не представляется возможным. Это объясняется тем, что содержащийся в высокой концентрации макрокомпонент ведет себя подобно растворителю. В результате за счет частичного улавливания растворителем [29] на хроматограмме появляются искаженные пики. Это явление часто называют обратным эффектом растворителя. По этой причине невозможно провести анализ смеси мономеров стирола (рис. 3-9), вводя пробу непосредственно в колонку. Разбавление же пробы не представляется возможным из-за низкого содержания в смеси других соединений. Приведем еще один пример. Имеется смесь, содержащ 1Я широкую гамму летучих соединений. При анализе ее с использованием непосредственного ввода в колонку достигнуты удовлетворительные результаты. Добавим к смеси суще-, ственное количество диоктилфталата (ДОФ). На хроматограмме полученной смеси пики веществ, элюируемых до ДОФ, имеют искаженную форму, причем искажения пиков не воспроизводятся. В зависимости от различий в полярности основы анализируемой пробы получаются ргш(ичные формы пиков. Компоненты пробы, обладающие близкой полярностью, имеют сильно искаженные пики (эффект фиксации). Пики веществ, сильно различающихся по полярности, могут быть вообще не искажены (эффект сгущения). При анализе таких проб можно прибегнуть к вводу пробы с программированием температуры испарителя. [c.114]

    Системы полимер — растворитель (1) — растворитель (2), которые Рейтлингер относил к системам полимер — жидкость — (газ) [133], по нашему мнению, включают две группы трехкомпонентных систем. Основную группу составляют системы, в которых полимерная мембрана приводится в контакт со смесью двух (или более [220]) растворителей-диффузантов, одновременно проникающих через мембрану, либо сорбируемых ею. Вторую группу образуют системы, в которых один из компонентов предварительно равномерно распределен в мембране, а другой — диффузант участвует в процессе переноса. Очевидно, что системы первой группы составляют основной предмет исследования в мембранной технологии, к системам второй группы относятся пластифицированные и модифицированные полимеры в широком смысле этих понятий (т. е. не только содержащие традиционные пластификаторы, но и увлажненные, насыщенные парами растворителей, мономерами и т. п.). Покажем, чем анализ диффузионных свойств этих систем может быть выполнен в рамках одного подхода. [c.137]

    Методика работы. В стакане приготавливают смесь стирола и метакриловой кислоты в мольном соотношении 2 1 и растворяют 0,5% динитрила азо-бис-изомасляной кислоты (от суммы мономеров). Смесь наливают в пять ампул или пробирок с пришлифованными пробками (по 5 мл). В первой ампуле сополимеризация проводится без добавок, в остальные ампулы добавляют по 5 мл следующих растворителей бензола, диоксана, диметилформамида, пиридина. Ампулы продувают инертным газом (азотом или аргоном), запаивают, тщательно перемешивают содержимое и помещают в термостат с температурой 60°С. Сополимеризацию проводят до сиропообразного состояния. Затем ампулы быстро охлаждают, осторожно вскрывают и содержимое высаждают горячей водой из диоксана и диметилформамида и петролейным эфиром или гекса-ном из бензола и пиридина. Сополимеры переносят в стакан с чистым осадителем, промывают и сушат в предварительно взвешенных чашках Петри сначала на воздухе, а затем в сушильном шкафу при 40—50 °С до постоянной массы. Содержание кислоты в сополимере определяют анализом на карбоксильные группы (см. с. 40). Полученные результаты вносят в табл. 3.5. [c.46]

    Кинетический анализ анионной полимеризации достаточно сложен, в частности, из-за отсутствия стадии обрыва цепи во многих система.к или из за обрыва цепи в результате наличия примесей. Обычно скорость роста цепи характеризуется первым порядком по концентрации мономера независимо от типа растворителя и проти-вонона. [c.47]

    Однако анализ схем самоинициирования катионной полимеризации кислотами Льюиса, в том числе и описанных в [4], позволяет сделать вывод о достаточной специфичности этих реакций, поэтому в лучшем случае эти схемы приемлемы лишь для конкретных систем и условий процесса. Так, прямое присоединение кислоты требует ее большого избытка, самоионизация - присутствия полярного растворителя, а формирование гидридного иона - обязательного наличия у мономера лабильного (например, аллильного) водорода. [c.39]

    Впервые систематизируются научные исследования в области макроскопической модели протекания быстрых процессов олиго- и полимеризации изобутилена. Обсуждаются диффузионная, гидродинамическая и зонная модели. Рассмотрено математическое моделирование процесса полимеризации изобутилена как быстрой химической реакции. Раскрыты основные принципиально новые, в большей мере не имеющие аналогов, закономерности процесса и выявлены три макроскопических типа протекания реакции, прежде всего факельного и квазиидеального вытеснения в турбулентных потоках ( плоский фронт реакции). Рассмотрен нетрадиционный подход к оценке кинетических констант реакции полимеризации изобутилена Кр и К . Детально проанализированы методы регулирования основных молекулярно-массовых характеристик полиизобутилена благодаря изменениям различных факторов в первую очередь не имеющих аналогов в режиме квазиидеального вытеснения в турбулентных потоках, где выявлен ряд критических параметров. Рассмотрено влияние теплосъема как внешнего, так и внутреннего (за счет кипения мономера и/или растворителя). Детальный анализ теплового режима реакции полимеризации изобутилена и его влияния на молекулярную массу и молекулярно-массовое распределение полимера позволили предложить новый метод оценки молекулярно-массовых характеристик с использованием зонной модели. На базе этой модели разработаны принципы регулирования молекулярных масс и молекулярно-массового распределения полиизобутилена в зависимости от числа зон подачи катализатора и его количества, подаваемого в каждую зону. [c.378]

    Вторая половина XX века характеризуется бурным, интенсивным ростом производства и потребления продуктов нефтехимии и основного органического синтеза. Одним из наиболее важных и динамично развивающихся направлений является производство химических средств защиты растений, главным образом, хлорорганических соединений. Кроме того, различные хлоруглеводороды и их производные находят широкое применение в качестве растворителей, пластификаторов, мономеров и сополимеров, красителей и др. В то же время, на рубеже веков становится очевидным, что рост масштабов производства и применения этих соединений может представлять определенную угрозу для окружающей среды, поскольку при их производстве и использовании неизбежно образуются эко- и суперэкотоксиканты, (полихлорбифенилы, полихлордибензо-1,4-диоксаны, полихлордибензофураны и др.). В этой связи понятна и очевидна важность и актуальность изучения истории становления и развития ключевых процессов хлорорганического синтеза, к которым относятся производства монохлоруксусной кислоты, монохлорамина, дихлорамина и хлоранила, созданные в 1950-1960-е годы на ОАО Уфахимпром . Исторический анализ опыта производства ряда хлорорганических продуктов на ОАО Уфахимпром позволяет сформулировать основные тенденции и направления развития нефтехимии в XXI веке, что полностью отвечает задачам современной науки и техники. [c.3]

    Личерагурный обзор состоит из двух частей. В первой части рассмотрена сополимеризация окисей олефинов с СОз в присутствии различных каталитических систем. Проведен сравнительный анализ сополимеризации ПО с СОг в избытке ПО (ПО-мономер и растворитель), а также при применении суперкритического СОг (СОг-мономер-растворитель). [c.7]

    Все синтезированные полимеры представляют собой порошки желто-коричневого цвета. Согласно данным РСА, полимеры имеют аморфную структуру. На свойства полимеров определенное влияние оказывает природа исходного мономера. Так, наличие в полимерной цепи гексафторизопропилиденовых группировок значительно улучшает растворимость полимера в органических растворителях полимеры на основе дихлорангидрида 4,4 -дикарбоксидифенил-2,2 -гексафторпропана растворимы даже в ацетоне и ТГФ, тогда как полимеры, содержащие кардовую фталидную группировку или -и-фениленовые группы в макромолекулярной цепи, растворимы лишь в растворителях амидного типа при нагревании. Согласно данным термомеханического анализа, температуры размягчения полученных полимеров составляют 230-290 °С. Полимеры достаточно термостабильны разлагаются выше 300 °С. [c.194]

    Остаточные мономеры и низкомолекулярные неполимеризующиеся примеси, попадающие в полимерные материалы из исходного сырья и употребляемых в их производстве растворителей, крайне неблагоприятно действуют на эксплуатационные качества самих полимеров. Источником примесей органических растворителей в полимерных пленках могут оказаться также лакокрасочные материалы, используемые для нанесения украшений и надписей. Иногда летучие примеси попадают в пластмассы вместе с добавляемыми к ним пластификаторами. Наконец, в некоторых медицинских полимерных упаковочных материалах и изделиях содержатся остаточные количества окиси этилена, применяемой для их стерилизации. Большинство содержащихся в полимерных материалах летучих примесей — вредные и ядовитые вещества, а винилхлорид является канцерогеном, вдыхание которого приводит к раку печени. Содержание этих компонентов подлежит строгому нормированию и контролю, причем особенно жесткие нормы устанавливаются на материалы, предназначаемые для упаковки и хранения пищевых продуктов. В этом случае даже сравнительно малотоксичные летучие примеси, попадая в пищу, могут существенно изменить ее запах и вкус, снизить качество и сделать непригодной к употреблению. Определение следов летучих примесей стало, таким образом, одним из важнейших направлений аналитической химии полимеров. Применение для этой цели парофазного анализа представляется особенно целесообразным прежде всего потому, что вводить в хроматограф полимеры нежелательно и не всегда возможно. Однако парофазный анализ полимеров требует учета специфических свойств анализируемых объектов, подавляющее большинство которых представляет собой твердые материалы, плохо растворимые в обычных растворителях и разлагающиеся при сравнительно низких температурах. Казалось бы, самым простым решением задачи мог быть анализ равновесной газовой фазы над полимером, но диффузия летучих компонентов из твердого полимера к его поверхности затруднена и равновс  [c.138]

    Калибровка по стандартным образцам известного состава в случае прямого АРП твердых полимеров применяется редко, поскольку изготовление таких твердых образцов с различным и точно известным содержанием летучих примесей очень затруднительно или невозможно. Чаше всего ограничиваются приблизительными оценками, создавая условия, благоприятные для диффузии большей части летучих примесей из образца — увеличивая температуру и объем газовой фазы и пренебрегая оставшейся в полимере долей примесей. Такой подход вполне оправдывает себя в области, где АРП твердых образцов получил наибольшее распространение, для определения остаточных растворителей и мономеров в полимерных пленках, применяемых для упаковки нишевых продуктов. Оптимальные условия анализа находят эмпирически, причем в простейших вариантах отбор проб воздушной среды над образцами осуществляют обычными медицинскими шприцами без строгого термостатирования и учета колебаний давления, но соблюдая тот же режим работы и при построении калибровочных графиков. Примером может служить методика определения следов бензина в одном из распространенных [c.145]

    Выполнение анализа. В две конические колбы помещают две навески полимера по 0,3 г, взятые с погрешностью не более 0,0002 г, в одну заливают 10 мл метанола (для растворения свободного додекаметилендиамина), а в другую—10 мл этанола (для растворения свободного пиромеллитового диангидрида). Интенсивно перемешивают и выдерживают при комнатной температуре 24 ч. Затем, отфильтровав осадки, экстракты упаривают до 2 мл на воздухе при комнатной температуре. Хроматографирование проводят восходящим способом на пластинках 811и1о1 в системах 1 и 2. На две пластинки наносят по 7-10 мл экстрактов и 1 %-ные растворы свидетелей на одну пластинку 1 %-ный раствор пиромеллитового диангидрида в этаноле, на другую—1 %-ный раствор додекаметилендиамина в метаноле. Пластинки опускают в камеру со смесью растворителей и проводят хроматографирование до тех пор, пока слой растворителя не достигнет линии фронта. После окончания разделения хроматограммы сушат на воздухе 24 ч, затем проявляют, опрыскивая их раствором бромфенолового синего. Визуальным сравнением интенсивности окраски пятен проб и свидетелей находят и рассчитывают содержание мономеров. Предел обнаружения примесей — не менее 0,1%. [c.202]


Смотреть страницы где упоминается термин Анализ растворителей и мономеров: [c.196]    [c.58]    [c.58]    [c.31]    [c.196]    [c.121]    [c.23]    [c.108]    [c.244]    [c.27]    [c.48]    [c.48]    [c.27]   
Смотреть главы в:

Методы анализа лакокрасочных материалов -> Анализ растворителей и мономеров




ПОИСК







© 2025 chem21.info Реклама на сайте