Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганическая химия кислород и его соединения

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Учебник Введение к полному изучению органической химии открывается главой Общие понятия , в которой автор прежде всего подводит читателя к определению предмета органической химии. А. М. Бутлеров показывает при этом несостоятельность виталистических представлений, обосновывавших выделение органической химии особым происхождением органических веществ. Он отмечает далее, что отличительным признаком органических веществ не может служить и их легкая изменяемость органическое вещество нафталин устойчиво при температуре красного каления, а неорганическая перекись водорода пли бертолетова соль ра зла-гаются при небольшом повышении температуры. Между органическими и неорганическими веществами нельзя провести и резкой грани в составе хотя чаще всего в органических соединениях встречаются углерод, водород, кислород, азот, но в них можно встретить также галогены, серу, фосфор, мышьяк, ртуть, олово, свинец. Такие факты заставляют предполагать, — пишет А. М. Бутлеров, — что все элементы способны находиться в составе органических веществ . В этих его словах содержится предвидение грядущего бурного развития химии элементоорганических соединений. Рассмотрев и отбросив критерии происхождения, свойств и состава, А. М. Бутлеров логически подводит читателя к выводу, что органическая химия — это химия углеродистых соединений. [c.19]

    В настоящее время наблюдается мощный интеллектуальный подъем в неорганической химии, который сильнее всего затронул те ее области, которые лежат на стыке с соседними дисциплинами химию металлоорганических и бионеорганических соединений, химию твердого тела, биогеохимию и др. Возрастает, в частности, уверенность ученых в том, что неорганические элементы играют важную роль в живых системах. Живые существа вовсе не являются чисто органическими. Они весьма чувствительны к ионам металлов почти всей Периодической системы Д.И. Менделеева. Некоторые ионы играют важнейшую роль в таких жизненно важных процессах, как связывание и транспорт кислорода (железо в гемоглобине), поглощение и конверсия солнечной энергии (магний в хлорофилле, марганец в фотосистеме II, железо в ферродоксине, медь во фта-лоцианине), передача электрических импульсов между клетками (кальций, калий в нервных клетках), мышечное сокращение (кальций), ферментативный катализ (кобальт в витамине В12). Это привело к взрыву творческой активности ученых в области неорганической химии биосистем. Мы начинаем изучать строение ближайшего и дальнего окружения атомов металлов в биосистемах и учимся понимать, как это окружение позволяет атому металла с такой высокой чувствительностью реагировать на изменение pH, давление кислорода, присутствие доноров или акцепторов электронов. [c.158]


    Первый типический элемент VI группы — кислород — самый распространенный элемент на Земле его содержание составляет почти 50 мае. долей, %. А по ОЭО кислород стоит на втором месте после фтора и поэтому образует огромное число соединений с другими элементами периодической системы. Не случайно большая часть неорганической химии посвящена кислородным соединениям. Первоначально классификация неорганических веществ, кислотно-основное взаимодействие, окислительно-восстановительные процессы рассматривались в рамках приоритетной роли кислорода и его самого важного соединения — воды. [c.311]

    Органическая химия изучает соединения углерода, хотя, положим, углекислый газ - неорганическое вещество. Далее выяснилось, что в основном это углеводороды С Н , затем было уточнено, что основу органических веществ составляют элементы - органогены. Это, кроме углерода и водорода, кислород, азот, сера, галогены, фосфор. Кроме этих основных атомов, в состав органических соединений входят почти все элементы периодической системы, но в малых количествах. А основу составляют все же углерод и водород. Но вот что поразительно. Сейчас известно свыше 20 млн. химических соединений, из них раз в сто меньше неорганических. Получается, что фактически два элемента [c.11]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    Факты, говорившие о том, что процесс химического взаимодействия зависит от количества действующих масс, поступали из области как органической, так и неорганической химии. Работы Г. Розе (1851), Р. Бунзена (1853), Д. Глэдстона (1855) дали материал (в основном по реакциям двойного обмена) для доказательства существования обратимых химических превращений и возможности изменения направления реакции путем подбора соответствующих условий ее протекания. В 1857 г. А. Сент-Клер Девиль 2 доказал, что разложение химических соединений начинается ниже температуры их полного разложения. В статье О диссоциации или самопроизвольном разложении веществ под влиянием тепла (1857) Сент-Клер Девиль показал, что под влиянием температуры происходит разложение водяного пара на кислород и водород при температуре плавления платины 1750°С и при температуре плавления серебра 950°С. [c.323]

    В XX в. начала приоткрываться завеса над обширной областью, прилегающей к границе органической и неорганической химии В 1899 г. английский химик Фредерик Стенли Киппинг (1863— 1949) занялся изучением органических соединений, содержащих кремний — самый распространенный после кислорода элемент земной коры. Киппинг посвятил изучению кремния более сорока лет и синтезировал множество органических соединений, содержащих один или несколько атомов кремния. Как выяснилось, можно получать бесконечно длинные цепи, состоящие из чередующихся атомов кремния и кислорода. [c.143]

    Калориметрический метод определения теплот сгорания в калориметрической бомбе первоначально был разработан применительно к органическим соединениям, подавляющее большинство которых экзотермически окисляется кислородом. Затем по мере развития калориметрии в течение последних десятилетий широкое распространение получил метод определения теплот взаимодействия неорганических соединений с кислородом и галогенами. Так, методом сожжения в атмосфере фтора под давлением были установлены стандартные термодинамические характеристики ряда фторидов, путем замещения хлора на кислород — теплоты образования некоторых оксидов, окси-хлоридов и хлоридов. Поэтому в настоящее время метод определения тепловых эффектов с помощью калориметрической бомбы можно считать инструментальным ме+годом неорганической химии. [c.18]

    Вторая часть книги, двадцать две ее главы (т. 2 и 3 в русском переводе), содержит систематическое описание строения молекул, молекулярных, олигомерных или бесконечно-полимер-ных ионов и кристаллов соединений разных химических классов. Очередность изложения материала можно назвать классической это именно тот порядок, который принят в большинстве учебников по неорганической химии. Просмотрев оглавление, читатель убедится, что автор движется по группам периодической таблицы Д. И. Менделеева последовательно рассматриваются соединения с участием водорода, галогенов, кислорода, серы и других халькогенов, азота, фосфора и их аналогов по группе и т. д. Такой порядок расположения материала делает монографию, с одной стороны, очень удобным и нужным дополнением к учебникам по неорганической химии (особенно полезным для аспирантов и соискателей степени кандидата наук), с другой стороны, хорошим источником сведений о структурных основах для научных работников — специалистов в той или иной области неорганической химии. Каждая глава (или группа глав) книги может служить фундаментом для разработки углубленных концепций о связи между реакционной способностью, строением и физико-химическими свойствами соответствующих классов соединений. [c.6]


    Особая роль кислорода в химии. В становлении и развитии классической неорганической химии неоценимая роль принадлежит кислороду. Еще Берцелиус утверждал, что кислород — это та ось, вокруг которой вращается химия. Обусловлено это двумя причинами. Во-первых, чрезвычайно большая распространенность и исключительная реакционноспособность кислорода определяют многообразие форм его соединений. Во-вторых, классическая неорганическая химия в основном — это химия водных растворов. Другими словами, она представляет собой химию самого распространенного и самого главного соединения кислорода — оксида водорода. Поэтому многие основополагающие понятия, такие, как валентность по кислороду, окислительное число, окисление, горение, кислоты и основания, соли и т. д., были сформулированы применительно к кислороду и его важнейшим соединениям. Больше того. До 1961 г. применялась кислородная шкала атомной единицы. массы. [c.312]

    Почти все отравляющие вещества, имеющие военное значение, являются органическими соединениями. Кроме двойной соли аммонийбериллийфторида, которую можно использовать для заражения воды, мышьяковистого и фосфористого водородов, обладающих общетоксическим действием, но не применимых вследствие неподходящих физических свойств, не имеется других не органических токсичных соединений, пригодных для военных целей. В настоящее время трудно провести границу между органической и неорганической химией. Металлоорганические соединения занимают промежуточное положение, и среди них имеются соединения, которые могут иметь определенное военно-химическое значение, — это некоторые карбонилы металлов и тетраэтилсвинец. Для большинства органических ОВ, нашедших применение в качестве боевых химических веществ, характерно наличие гетероатомов. Сильнодействующие отравляющие вещества (а только такие здесь и рассматриваются), кроме некоторых ядов животного и растительного мира, таких, как кантаридин или окись углерода, в редких случаях состоят только из трех главных элементов — углерода, водорода и кислорода. Обычно в них входят элементы, наличие которых и придает им токсические свойства прн действии на теплокровные организмы фтор, хлор, сера, азот, фосфор и мышьяк. Те элементы, которые входят в состав металлоорганических соединений, здесь не упомянуты. [c.33]

    Научные работы в области химии относятся к неорганической химии и электрохимии, основоположником которой он является. Открыл (1799) опьяняющее и обезболивающее действие закиси азота и определил ее состав. Изучал (1800) электролиз воды и подтвердил факт разложения ее на водород и кислород. Выдвинул (1807) электрохимическую теорию химического сродства, согласно которой при образовании химического соединения происходит взаимная нейтрализация, или выравнивание, электрических зарядов, присущих соединяющимся простым телам при этом чем больше разность этих зарядов, тем прочнее соединение. Путем электролиза солей и щелочей получил (1808) калий, натрий, барий, кальций, амальгаму стронция и магний. Независимо от Ж. Л. Гей-Люссака и Л. Ж- Тенара открыл (1808) бор нагреванием борной кислоты. Подтвердил (1810) эле,меитарную природу хлора. Независимо от П- Л. Дюлонга создал (1815) водородную теорию кислот, Одно-времеино с Гей-Люссаком доказал (1813—1814) элементарную природу иода. Сконструировал (1815) безопасную рудничную лампу. Открыл (1817—1820) каталитическое действие платины и палладия, Получил (1818) металлический литий. [c.180]

    Значение этих исследований состоит также в том, что на их основе была пересмотрена роль кислорода в химии. С конца XVI столетия, после крушения теории флогистона, кислороду отводилось исключительное место в химии. Этот элемент характеризовали тем, что, соединяясь с металлами, он дает основания, а с неметаллами — кислоты его рассматривали вообще как элемент, сообщающий некоторые отличительные свойства тем соединениям, в состав которых он входит. Представления об исключительной роли кислорода в неорганической химии были перенесены в область органической химии так, например, считалось, что многие органические вещества следует рассматривать как окислы некоторых органических радикалов. В связи с этим открытие, что такой органический радикал, как бензоил, уже содержит кислород, превращало последний из главного в обыкновенный химический элемент, по крайней мере в органической химии. [c.42]

    Кремний и некоторые его соединения. Углерод — основной элемент в органической химии, кремний — таковой в неорганической химии. Главная масса-земной коры состоит из силикатных пород, в которых, кроме кремния, находятся кислород, часто алюминий и другие элементы. Конечный продукт так называемого выветривания горных пород — обычный кварцевый песок SiO а. Из смеси его с магнием или алюминием при нагревании получают аморфный кремний  [c.292]

    Тетрафторид серы представляет собой легко гидролизуемый газ, который сжижается при —40,5° и 760 мм рт. ст.. Тетрафторид серы является общим наиболее эффективным реагентом для селективного замещения фтором кислорода или серы в неорганических и органических соединениях. Имеется подробный современный обзор по химии тетрафторида серы [13]. [c.357]

    Понятие валентности было введено Франкландом в статье О новом ряде органических тел, содержащих металлы Это первое исследование металлоорганических соединений, где рассмотрены также цинкал-килы, описанные Франкландом в предшествовавшей статье Как проницательно отмечает Э. Мейер , знаменателен факт, что для основания учения о валентности послужили не простыв соединения неорганической химии, а более сложные соединения химии органической... Именно исходя из состава органометаллов, Франкланд сделал заключения, которые составляют ядро современной теории валентности... Основываясь на наблюдениях над оловоэтиловыми соединениями так же, как над поведением производных какодила и других тел, Франкланд убедительно доказал несостоятельность теории парных веществ . Согласно последней теории, следовало бы принять — таков путь, избранный Франкландом,— что соединительная способность металлов, связанных с радикалами, относительно кислорода остается неизменной. Но против такой гипотезы говорят важные факты, как это ясно показывают следующие примеры этилолово (ЗпС4Нв 8п = 59,5 С = 6), согласно этой теории, должно, как и олово, связываться с кислородом в двух отношениях, между тем оно способно принимать один эквивалент кислорода, а не два, как свободное олово. Мышьяк, спаренный с двумя метильными радикалами, какодил, наоборот, образует два окисла, о которых можно было бы думать, что окисел с одним эквивалентом кислорода соответствует недокиси мышьяка, а окисел с тремя эквивалентами кислорода — мышьяковистой кислоте, но при таком допущении остается необъяснимым тот факт, что соединение с тремя эквивалентами кислорода окисляется очень легко, тогда как предположительно соответствующую ему какодиловую кислоту невозможно окислить. [c.256]

    На первых порах своего развития органическая химия, естественно, использовала установленные к тому времени обобщения в области неорганической химии, в которой к началу тридцатых годов была в основном закончена систематика соединений. По дуалистической электрохимической теории Берцелиуса, получившей в те годы широкое признание, все неорганические соединения рассматривались как бинарные соединения, состоящие из двух частей, имеющих противоположный электрохимический характер и удерживаемых в молекуле вследствие электростатического притяжения. Так, например, считали, что состоит из К2О+ и 50з каждая из этих составных частей, в свою очередь, может быть разложена на две еще более простые части—положительно заряженный калий и отрицательно заряженный кислород—и, соответственно, серу и кислород. Дуалистические представления пытались перенести и на органические соединения. [c.16]

    Водород, подобно углероду и кислороду, образует миллионы соединений. Подавляющее большинство их принадлежит к числу органических соединений. Химия органических соединений обсуждается далее в главах 21—33. Поэтому в данной главе мы сосредоточим внимание на основных типах неорганических соединений, образованных водородом (гидриды, кислоты, щелочи и др.). [c.160]

    Соединения включения широко известны и в неорганической химии Это кластеры, соединения внедрения водорода (Рс1), кислорода (Тх, ЫЬ), азота (сталь), углерода (сталь), соединения включения стали, графита, алюмосиликатов (цеолиты) и др [c.61]

    По числу соединений и их производных, образуемых кислородом со вторым типическим элементом — серой, VI группа не знает аналогов, что свидетельствует о большом химическом сродстве между двумя типическими элементами. Об этом же говорит и тенденция к взаимозаменяемости этих элементов в рядах оксид — сульфид, оксокислоты — тиокислоты, оксосоли — тиосоли и т.д., проходящая красной нитью через всю неорганическую химию. [c.432]

    Наиболее распространенными являются органические соединения углерода с водородом, кислородом, азотом, галогенами, а также фосфором и серой. Исследования последних десятилетий раздвинули рамки элементарного состава органических соединений, охватывающих уже сейчас почти всю периодическую систему элементов. Происходит стремительное увеличение числа и возрастание значения элементоорганических соединений с открытой цепью и циклических. Некоторые разделы химии элементоорганических соединений, занимающие пограничные области между органической и неорганической химией, развились в самостоятельные отрасли, например химия фтор- или кремнийорганических соединений. [c.8]

    Следует еще раз подчеркнуть, что схема Косселя — это чрезвычайно грубое упрощение. Связь О—Н не является ионной, и расстояние между центрами атомов кислорода и водорода никогда не равно 1,32 А, ион водорода утоплен в электронных оболочках кислорода (см. стр. 209). Кроме того, в случае высоких степеней окисления связь между-элементом Э и кислородом также не является ионной, и степень окисления, как указывалось выше, не соответствует заряду иона элемента. Однако несмотря на все это, схема Косселя в большинстве случаев приводит к совершенно правильным качественным выводам при сопеставлении сходных соединений, Скажем, гидроксидов элементов, принадлежащих к одной и той же группе периодической системы. Эта неожиданная применимость столь грубого построения обусловлена тем, что даже в случае связей, сильно отличающихся от ионных, их прочность растет с уменьшением межатомных расстояний (а следовательно, и вычисляемых из ни радиусов ионов ) и с увеличением степени окисления. Часто степень окисления приблизительно показывает число электронов данного атома, принимающих участие в образовании химической связи. Чем больше электронов участвует в образований связей, тем прочнее связи. Поэтому схема Косселя полезна для первоначальной общей ориентировки в многообразном материале неорганической химии. [c.89]

    Современная органическая химия является наиболее широким полем для химического исследования. К настоящему времени в органической химии зарегистрировано и описано около 3 млн. соединений, в неорганической химии— лишь около 100 тыс. соединений. Почти 90 7о органических соединений состоят из различных количеств углерода, водорода и кислорода. Многие соединения содержат еще и азот, реже — серу, фосфор, галоиды. Однако в принципе почти каждый элемент может быть встроен в органическое соединение. Это объясняется особыми свойствами атома углерода, из которого состоят скелеты органических соединений. [c.80]

    Из 2468 неорганических соединений, которые считаются достаточно важными для включения в справочники с указанием их физических свойств, 1220 соединений (т. е. более 49%) представляют собой соединения неметаллических элементов с кислородом. Большинство кислородсодержащих соединений неметаллических элементов имеют трансаргоноидную структуру, и разнообразие этих структур более, чем какая-нибудь другая структурная особенность, предопределяет все богатство неорганической химии. [c.206]

    Связанный кислород составляет /ю объема земной коры, и большая часть неорганической химии так или иначе посвяш,е-на соединениям, содержащим кислород. Чистые оксиды среди минералов встречаются редко. Соединения, содержащие помимо кислорода два и более элементов, можно классифицировать на основе электроотрицательностей этих элементов. Поскольку соединения АхХуОг, содержащие два элемента с высокой электро-отрнцательностью, немногочисленны, можно выделить две основные группы  [c.211]

    Качественный элементарный анализ органических веществ. При исследовании качественного состава чистых органических соединений чаще всего приходится встречаться с небольшим числом элементов. Это — углерод, водород, кислород, азот, сера, галоиды и фосфор. Открытие всех этих элементов, кроме водорода и кислорода, основано на переводе их в растворимые в воде ионизирующиеся соединения, анализируемые с применением соответствующих реакций, хорошо известных из неорганической химии. Водород же открывается в виде воды. [c.36]

    Номенклатура водородсодержащнх соединений, как н других соединений неорганической химии, исторически сложилась по двум направлениям. Первое (ид-система) применяется для соедииеиий, у которых известны зарядиость входящих в них элементов. По данной системе в случае отрицательно заряженных водорода и кислорода к наименованию более отрицательно заряженного элемента прибавляется суффикс ид , например гидрид литня, оксид водорода. Соединения водорода с элементами, стоящими слева от водорода в ряду электроотрнцательности, будут называться термином гидрид . [c.5]

    В первом томе учебника Г. Реми Курс неорганической химии (1972 г.) отмечается, что уже в процессе синтеза происходит отщепление кислорода, и полученный продукт представляет собой не чистое соединение, а смесь BijOj и ВЮ2. Еще более определенно высказываются Ф. Коттон и Дж. Уилкинсон, авторы учебника Современная неорганическая химия (1969 г.) вот что они пишут Единственным хорошо изученным окислом висмута является В120з. .. По-видимому, пятиокись висмута существует, но она крайне неустойчива и никогда не была получена в совершенно чистом состоянии . [c.69]

    В неорганической химии подобные трудности почти никогда ие встречаются. Существует лишь одно соединение, отвечающее формуле КМПО4, только одно, отвечающее формуле К2СГ2О7, и вообще, явление изомерии, как правило, не наблюдается. Там достаточно установить эмпирическую формулу вещества, чтобы получить для него практически полную химическую характеристику. После того как по результатам качественного и количественного анализов для перманганата калия была установлена формула КМПО4, стало очевидным, что при наличии восьми отрицательных валентностей атомов кислорода и одной положительной валентности атома калия атом марганца положительно семивалентен, что согласуется с его положением в периодической системе элементов. [c.24]

    Элементы III А подгруппы — S , Y и РЗЭ — образуют очень большое число соединений с кислородом и халькогенами, обладающих высокими температурами плавления. При этом из кислородных соединений наиболее устойчивыми являются соединения состава 2 3, например S gOg, Y2O3, LagOs и другие, с трехвалентным атомом металла. Свойства соединений редкоземельных элементов с элементами VI группы различны для элементов подгруппы иттрия, церия и самария. Свойства халькогенидов РЗЭ подгруппы церия детально рассмотрены в работе Ярем-баша [60] на основе экспериментального материала, полученного в лаборатории химии полупроводников Института общей и неорганической химии им. Н. С. Курнакова АН СССР, а также в двух монографиях по сульфидам [28], селенидам и теллуридам [29] редкоземельных металлов. [c.210]

    Принцип зтот, до сих пор еще недостаточно исследованный, настойчиво проводился в курсе неорганической химии Д. И. Менделеевым. В дальнейшем изложении мы еще не раЗ вернемся к толкованию принципа, а пока скажем о нем следующее газообразные молекулы, содержащие в своем составе общее нечетное число атомов элементов нечетного порядкового номера (и, очевидно, нечетное число электронов), называют нечетными молекулами. Они обычно неустойчивы, так как образуются из свободных атомов с уменьшенным выделением энергии. Нечетные молекулы стремятся так или иначе изменить свой состав и обычно склонны к димеризации, т. е. к соединению двух одинаковых молекул в одну при этом получается молекула с четным числом атомов нечетного порядкового номера, т. е. четная молекула. Четные молекулы содержат четное число электронов. Мы видим, что при димеризации двух гидроксилов в одну молекулу перекиси водорода выделяется 52 ккал (в связи с этим уровень 2 (ОН) лежит выше уровня (Н2О2)). Молекулы НО и НО2 содержат по одному атому элемента нечетного номера (номер водорода — первый) и, кроме того, атомы четного элемента — кислорода (номер кислорода — восьмой). [c.118]

    При умеренных температурах нитрат аммония обратимо улетучивается при более высокой температуре наступает экзотермическое необратимое разложение, дающее главным образом N,,0. Эту реакцию используют для промышленного получения N, 0. При еще более высоких температурах N O разлагается на кислород и азот. Нитрат аммония может детонировать при инициировании процесса другими взрывчатыми веществами смесь нитрата аммония с тринитротолуолом или другими взрывчатыми веществами используют для наполнения бомб. Разложение жидкого нитрата аммония также может происходить взрывообразно известен ряд разрушительных взрывов, последовавших после воспла.менения нитрата аммония. Производные аммиака. Известно огро. шое число соединений, которые можно рассматривать как производные аммиака, получающиеся заменой атомов водорода на органические или неорганические радикалы. Большинство из них, такие, как а.мины и амиды, обычно относят к органическим соединениям, и здесь они не будут рассмотрены. Однако необходилю отметить, что тетралкиламмоние-вые катионы R4N+ часто используют в неорганической химии, когда необходимы большие однозарядные катионы. Обычно их получают следующим путем  [c.168]

    Атом кислорода имеет электронную структуру 8 25 2р. Кислород образует соединения со всеми элементами, за исключением Не, К е и, возможно, Аг при обычной или повышенной температуре он непосредственно взаимодействует со вселш остальиыли элементалиг в свободном виде, исключая галогены, несколько благородных металлов и инертные газы. В земной коре содержится около 50 вес.% кислорода. Большая часть неорганической химии посвящена хилши кислородных соединений. Это видно уже хотя бы по тому, что большая доля химии касается наиболее важного соединения кислорода — воды. [c.195]

    Химию фторазотных соединений можно представить в виде трех разделов 1) неорганические фториды азота — соединения, состоящие из атомов фтора, азота, кислорода, водорода и хлора эти вещества можно называть простыми фторидами азота 2) неорганические сложные фториды азота — вещества, в которых группа Мр2 или ЫР связана с каким-либо элементом — серой, сурьмой, алюминием 3) органические фториды [c.5]


Смотреть страницы где упоминается термин Неорганическая химия кислород и его соединения: [c.241]    [c.48]    [c.2]    [c.24]    [c.102]    [c.14]    [c.261]    [c.292]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения кислорода

Химия неорганическая



© 2024 chem21.info Реклама на сайте