Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состояние кристаллическое, и далее

    Переход жидкой фазы чистого вещества в кристаллическую происходит при постоянной температуре и соответствует горизонтальной площадке на кривой охлаждения. Далее увидим, что характер кривых охлаждения многокомпонентных систем может быть иным. Однако всегда при температуре, соответствующей началу фазового превращения, плавный ход такой кривой нару-щается. Это позволяет использовать кривые охлаждения, полученные для смесей различного состава, для построения диаграммы состояния изучаемой системы выбранных компонентов. Такие диаграммы называют еще диаграммами плавкости. Конкретный вид диаграммы зависит от свойств компонентов и определяется их взаимной растворимостью, а также способностью к образованию химических соединений. Ниже рассмотрим диаграммы плавкости некоторых бинарных двухкомпонентных систем. Во всех случаях будем предполагать, что системы находятся в условиях постоянного давления и выбранные компоненты обладают неограниченной растворимостью в жидком состоянии. [c.156]


    Из этих данных видно, что энтропия наиболее четко указывает на повышение структурной организации воды при ее переходе из газообразного состояния в жидкое и далее в кристаллическое. [c.10]

    Все же теория кристаллического поля не может правильно объяснить относительную силу лигандов и дает очень скудную информацию о возбужденных состояниях, при которых происходит перенос электрона и заряда. Далее, она не может дать объяснение возможности существования двойных связей между ионом металла и лигандом, хотя было показано, что этот факт играет важную роль во многих комплексах . Следовательно, мы можем заключить, что хотя теория кристаллического поля в некоторых случаях и была удачной, она еще имеет много серьезных ограничений. [c.265]

    Третий закон оправдан теоретическими соображениями. Далее ( 8, этой главы) мы узнаем, что согласно уравнению Больцмана (VI. 16) энтропия тела равна нулю, если термодинамическая вероятность состояния W равна единице. Значению = 1 отвечает единственно возможное макросостояние — идеально правильно построенный кристалл, в кристаллической решетке которого атомы занимают узлы в строгом соответствии с геометрическими законами. В реальных кристаллах вследствие их образования и охлаждения в неравновесных условиях имеются различные дефекты структуры. Поэтому энтропия реальных кристаллов при О К должна быть больше нуля. Фактически энтропия реальных кристаллов очень мало отличается от нуля, и этой разницей пренебрегают без ущерба для точности термодинамических расчетов. Газы, жидкости, стеклообразные фазы и растворы не подчиняются третьему закону термодинамики. [c.97]

    Для полимеров характерны некоторые особенности, такие, как высокоэластическое состояние в определенных условиях, механическое стеклование, способность термореактивных макромолекул образовывать жесткие сетчатые структуры. Механическая прочность полимеров возрастает с увеличением их молекулярной массы, при переходе от линейных к разветвленным и далее сетчатым структурам. Стереорегулярные структуры имеют более. высокую прочность, чем полимеры с разупорядоченной структурой. Дальнейшее увеличение механической прочности полимеров наблюдается при их переходе в кристаллическое состояние. Например, разрывная прочность кристаллического полиэтилена на 1,5—2,0 порядка выше, чем прочность аморфного полиэтилена. Удельная прочность на единицу площади сечения кристаллических полимеров соизмерима, а на единицу массы на порядок превышает прочность легированных сталей. [c.361]


    Изучение ИК-спектров этого вещества в жидком и кристаллическом состоянии показало, что в обоих агрегатных состояниях спектры почти идентичны. Это указывает либо на существование вещества лишь в одной из конформационных форм, либо на близкую относительную устойчивость обоих конформеров. Окончательный выбор между этими двумя возможностями сделан не был. Изучение же конформации родственного изобутилхлорида дало более определенный результат [15]. Удалось показать, что из двух возможных конформаций преобладает (80%) трансоидно-скошенная конформация (аналогичная X с хлором вместо брома). [c.240]

    Рассмотрим кристаллическую решетку, в которой для каждого узла существуют два способа, две возможности быть занятыми. Два рода возможных состояний обозначим А и В. В случае бинарного сплава или твердого раствора символы А и В будут относиться к атомам (молекулам) разного сорта. В модели ферромагнитного вещества два рода состояний — это атомы данного металла (например, железа) с различной ориентацией электронного спина допустим, А — атом железа с положительной ориентацией спина, В — атом железа с отрицательной ориентацией спина. Вообще говоря, в узлах металлической решетки находятся положительные ионы, но для той модели, которая будет рассматриваться, это несущественно. Для простоты частицы А и В, находящиеся в узлах решетки, будем далее называть всегда атомами. Оговорим, однако, что А и В не могут быть ионами разного знака случай ионного кристалла АВ из рассмотрения исключается. [c.337]

    Проследим процесс нагревания системы, состав которой а . До температуры система находится в кристаллическом состоянии. В равновесии находятся кристаллы А и кристаллы химического соединения А Вц. При температуре Та происходит плавление эвтектики состава э. Составы жидкой и твердой фаз остаются неизменными, пока не расплавится вся эвтектика. Отсюда температура на кривой охлаждения не меняется. Далее начинается плавление кристаллов Аз,В . При этом состав жидкого расплава меняется. Состав твердой фазы остается неизменным. При температуре Т 1 химическое соединение становится неустойчивым. Оно разлагается на кристаллы В и расплав. Так как система становится при температуре Тх безвариантной, то на кривой нагревания наблюдается температурная остановка. После исчезновения последнего кристалла химического соединения Аа В начинается плавление кристаллов компонента В, Состав расплава вновь начинает меняться, меняется и температура плавления системы. При температуре Гз состав расплава становится таким же, как и состав исходной системы йх- При этой температуре исчезает последний кристалл компонента В, система становится гомогенной и при дальнейшем нагревании ее фазовое состояние не меняется. Процесс нагревания и связанный с ним процесс изменения фазового состояния системы на диаграмме плавкости показаны стрелками. [c.243]

    Согласно нашей концепции кристаллического состояния [125] семейства плотно упакованных кристаллографических плоскостей, пересекаясь друг с другом, определяют позиции атомов (вблизи точек пересечения) и таким образом являются основными структурообразующими факторами. Такой подход дал интересные результаты при исследовании кристаллических структур сульфидов тяжелых металлов [125] и других соединений [126]. [c.106]

    Таким образом, вещества и химические процессы могут быть классифицированы по уровням структурной организации вещества и по видам движения частиц, что представлено на схеме (рис. 2). Подобная классификация веществ и процессов основывается и на термодинамических положениях. Переход вещества из газообразного в жидкое и далее в кристаллическое состояние совершается при понижении температуры (или увеличении давления), при этом скачкообразно происходит увеличение степени порядка в системе и уменьшение энтропии. Изменение энергетического состояния системы приводит к скачкообразным переходам вещества из одного состояния в другое и, следовательно, к переходу от одной формы движения частиц в веществе к другой. [c.5]

    Далее, в силу возрастающего применения физических методов, особенно рентгеноструктурных исследований, ЯМР- и оптической (дисперсия оптического вращения, круговой дихроизм) спектроскопии, акценты были сдвинуты к проблемам топологии этих важных молекул и ее связи с их биологической функцией [114—116]. Другой, в равной мере важной причиной этого сдвига, была высокая степень жесткости циклопептидов по сравнению с их линейными аналогами, что снижало число связанных взаимопревращениями форм и в определенной мере облегчало анализ. Тем не менее эти пептиды все еще в какой-то мере сохраняют гибкость, и часто конформация в кристаллическом состоянии отличается от конформации в растворе. Подробное обсуждение конформаций выходит за рамки этого обзора, но приводятся узловые моменты, касающиеся химических или биологических свойств молекул. [c.313]

    Рассматривая только изолированный дублет, мы дали довольно упрощенную интерпретацию магнитной сверхтонкой структуры такой подход, однако, находит полезное применение при низких температурах. Несколько более общий подход требуется в случае двух других экспериментальных ситуаций. Во-первых, при более высоких температурах будет заселено большинство уровней (кристаллического поля) основного терма и может возникнуть наложение сверхтонких структур. Во-вторых, приложенное к образцу внешнее поле вызовет зеемановское расщепление состояний кристаллического поля, и тогда возникнет наложение сверхтонких структур от зеемановских уровней и получатся более сложные спектры. Чтобы рассмотреть такие случаи, обычно достаточно добавить изотропное сверхтонкое взаимодействие [c.449]


    Поэтому сказанное поясняет, что существование двупреломления в жидкости, которая должна быть изотропной, т. е. что ее свойства должны быть независящими от направления, представлялось парадоксальным. Наиболее правдоподобным в то время могло казаться наличие в мутной фазе нерасплавившихся малых частичек кристалла, кристаллитов, которые и являлись источником двупреломления. Однако более детальные исследования, к которым Рейнитцер привлек известного немецкого физика Лемана, показали, что мутная фаза не является двухфазной системой, т. е. не содержит в обычной жидкости кристаллических включений, а является новым фазовым состоянием вещества. Этому фазовому состоянию Леман дал название жидкий кристалл в связи с одновременно проявляемыми им свойствами жидкости и кристалла. Употребляется также и другой термин для названия жидких кристаллов. Это — мезофаза , что буквально означает промежуточная фаза . [c.11]

    Далее мы рассмотрим эффективный спин S. Мы уже пользовались этой концепцией, но теперь дадим ему формальное определение, чтобы описать, как некоторые из уже рассмотренных эффектов учитываются спин-гамильтонианом. Если кубическое кристаллическое поле оставляет основное состояние (например, состояние Т) орбитально вырожденным, то поля более низкой симметрии и спин-орбитальное взаимодействие будут снимать как орбитальное, так и спиновое вырождение. В случае нечетного числа неспаренных электронов крамерсово вырождение оставляет низшее спиновое состояние дважды вырожденным. Если расщепление велико, то этот дублет хорошо отделяется от дублетов, лежащих вьш1е, и переходы наблюдаются только в низшем дублете, который ведет себя как более простая система с S = 1/2. Тогда мы говорим, что система имеет эффективный спин S, равный только 1/2 (S = 1/2). Примером может служить комплекс Со . В кубическом поле основным состоянием является F под действием полей более низкой симметрии и спин-орбитального взаимодействия это состояние расщепляется на шесть дублетов. Если низший дублет отделен от других значительно больше, чем на кТ, то эффективный спин имеет величину 1/2 (S = 1/2) вместо 3/2. Если эффективный спин S отличается от спина S, то спин-гамильтониан может быть записан через S, а не через S. [c.222]

    Подобная классификация вешеств и процессов основывается и на термодинамических положениях. Переход вещества из газообразного в жидкое и далее в кристаллическое состояние совершается при понижении температуры (или увеличении давления), при этом скачкообразно происходит увеличение степени порядка в системе и уменьшение энтропии. Изменение энергетического состояния системы приводит к скачкообразным переходам вещества из одного состояния в другое и, следовательно, к переходу от одной формы движения часгиц в веществе к другой. [c.8]

    Прежде чем обсуждать некоторые теории координационной связи следует отметить, что теория — не более чем приближение к дей ствительности. И если бывают из нее исключения, этого еще не достаточно, чтобы обесценить всю теорию. Более вероятно, что исключения указывают на наше неумение давать им удовлетворительные объяснения. Обычно нужно только видоизменять тео-шю таким образом, чтобы эти исключения были ею охвачены Лримером может служить современное состояние метода валент ных связей. Часто одни и те же явления могут быть объяснены двумя или даже более теориями, и тогда мы должны искать более фундаментальную концепцию, общую для обеих теорий, которая будет по всей вероятности лучшим приближением к действительности. Такое положение существует сейчас и с теориями кристаллического поля, и молекулярных орбиталей в их применении к комплексам. На их основе вырос в настоящее время более универ сальный метод, известный как теория поля лигандов. Электронная теория валентности, сформулированная Льюисом в 1916 г. и распространенная на многие системы Лэнгмюром е 1919 г. и другими авторами в течение последующего десятилетия дала химикам возможность выразить вернеровское понятие валентности с помощью электронных представлений. Основная за слуга в использовании новой теории валентности принадлежит Сиджвику и Лаури . Главные валентности Вернера были интерпретированы как результат электровалентности, или пере коса электрона, а побочные рассматривали как проявление ковалентности, или обобщения электронных пар. Главная валент ность может быть, а может и не быть ионной. Так, если во внутрен пей координационной сфере находится отрицательный ион, на пример ион хлора в нитрате хлорпентаамминохрома (И1) Сг(ЫНз)цС1](ЫОз)з, он может быть связан с атомом металла как главной, так и побочной валентностями. В данном случае ион хлора потерял свой ионный характер. Только нитрат-ионы насы щают главную валентность и поэтому сохраняют свой ионный рактер. [c.245]

    Большая группа экспериментальных данных свидетельствует о том, что конформация молекулы лизоцима и ориентация функциональных групп его активного центра сходны, возможно идентичны, в кристалле и в растворе. К ним относятся, например, результаты сравнительного изучения денатурации растворимого и кристаллического (тетрагонального) лизоцима нод действием температуры и денатурируюпщх агентов с номон ью дифференциальной сканирующей калориметрии [35]. В этой работе было показано, что термодинамические параметры тепловой денатурации фермента и температура денатурацнп близки для фермента в кристалле и растворе. Далее, денатурирующее влияние алифатических спиртов также оказалось одинаковым по отношению к лизоциму в двух физических состояниях, и анализ данных показал, что конформация молекул лизоцима в растворе или кристалле одинаково зависит от гидрофобных взаимодействий с раствори- [c.155]

    Задача 6.5. Как видно из рис. 58, полоса поглощения d— -перехода в комплексе [Т1(Н гО)бР сильно размыта, что обусловлено электронноколебательными эффектами (см. далее раздел 6.5), но все же, как ожидается из картины расщепления уровней в октаэдрическом поле, в спектре водного раствора комплекса Т1С1з-6Н20 имеется всего одна полоса электронного перехода. Если же определить спектр поглощения этого комплекса в твердой фазе, то обнаруживаются две полосы d— -переходов при 15 000 и 18 300 см . Объясните происхождение этих полос, отнесите их к определенным электронным переходам, свяжите объяснение с изменением структуры координационного узла комплекса в кристаллическом состоянии по сравнению с состоянием в растворе. [c.179]

    В 1815—1817 гг. появились работы Ж. Биопосвященные изучению оптической активности некоторых органических вс-ш еств. Ученый связал эту активность со строением молеку.м изучаемых веществ. Я. Берцелиус в своем обзоре за 1838 г. писал Эти исследования находятся еще в самом начале вероятно, они приведут к результатам большого значения Далее Я. Берцелиус указывал, что химически идентичные веш ества обладают различным вращением плоскости поляризации и что нужны ещ(, кропотливые исследования, чтобы получить надежные результаты и выводы. Н . Био сделал важное наблюдение, что оптическая деятельность органических веществ проявляется как в растворах, так и в парообразном состоянии Отсюда вытекал важный вывод, что способность вращения зависит не от кристаллического строения вещества, т. е. ориентированного расположения частиц, а от дйссимметрии молекул, вызванной различным пространственным расположением в них атомов. [c.213]

    Однако не все свойства глюкозы согласуются с ее строением как альдегидоспирта. Так, глюкоза не дает некоторых реакций альдегидов. Один гидроксил из пяти характеризуется наибольшей реакционной способностью, и замещение в нем водорода на метнльный радикал приводит к исчезнонению альдегидных свойств вещества. Все это дало основание сделать вывод, что наряду с альдегидной формой существуют циклические формы молекул глюкозы (а-цикли-ческая и р-циклическая), которые отличаются положением гидроксильных групп относительно плоскости кольца. Циклическое строение молекулы глюкоза имеет в кристаллическом состоянии, в водных же растворах она существует в различных формах, взаилшо превращающихся друг в друга  [c.334]

    Халькогениды. Для систем индий—халькоген характерно образование соединений типа ПаХ, 1пХ и 1П2Х3, а также промежуточных соединений и соединений с большим содержанием халькогена. Полуторные халькогениды 1П2Х3 плавятся конгруэнтно. У моносульфида и моноселенида, как и у монохалькогенидов галлия, найдена слоистая структура типа ОаЗ, в которой существует связь металл — металл, с координационным числом индия 4. Монотеллурид индия имеет другое строение (см. далее). Из соединений ЫаХ в кристаллическом состоянии устойчивы только селенид и теллурид. Они плавятся инконгруэнтно [58], [c.292]

    По-друрому к определению рефракции кристаллических ионов подошел Руффа [122]. Он представил величины электронных поляризуемостей ионов, взятых из работ Полинра, как функции некоего эффективного параметра. Далее рассмотрел переход газообразных (т. е. бесконечно удаленных друг от друга) ионов в кристаллическое состояние, оценил по зонной теории изменение энергии электронных оболочек атомов в поле Маделун- [c.69]

    В трехгорлую колбу емкостью 500 мл, снабженную механической мешалкой, капельной воронкой и обратным холодильником (рис. 3 в Приложении I синтез ведут в вытяжном шкафу), помещают 43,8 г диметилформамида, при охлаждении добавляют 30,7 г Р0С1з, выдерживают 1 ч при комнатной температуре, охлаждают до 0 С и при интенсивном перемешивании медленно, по каплям, прибавляют 24,2 г свежеперегнанного диметилаиилина. Температура в колбе при этом не должна подниматься выше 20—25 °С. Далее реакционную смесь нагревают на кипящей водяной бане до образования гомогенного раствора, выливают в горячем состоянии на 200 г тонкоизмельченного льда и добавляют кристаллический ацетат натрия до тех пор, пока pH смеси не станет равным 6 (по универсальной индикаторной бумажке), на что обычно требуется 90—100 г ацетата, Выпавший диметиламинобензальдегид отфильтровывают на воронке Бюхнера, промывают на фильтре небольшими порциями воды и сушат на воздухе (см. примечание). Выход около 16 г (55% от теоретического) т, пл. 71 °С (из водного метанола). [c.168]

    Изучено депротонирование 2-незамещенных имидазолиевых и бензимидазолиевых солей 1а-(1 в безводном ацетонитриле. Депротонирование гидридом натрия дало продукты внедрения соответствующих карбенов в С-Н связи ацето-нитрила - 2-цианометил-2Я-азолины 5а-(1 [24]. Они были впервые выделены в чистом кристаллическом состоянии. [c.283]

    Раствор упаривают на водяной бане при 80 °С до сиропообразного состояния для удаления HNO3 и оксидов азота, далее добавляют 200 мл воды и снова выпаривают до появления кристаллической пленки. К полученному насыщенному раствору сульфата железа (III) добавляют 150 мл воды и горячий отфильтрованный раствор 32 г сульфата аммония (NH4)2S04 в 80 мл воды и 0,5—1 мл концентрированной серной кислоты. Смесь хорощо перемешивают стеклянной палочкой, медленно охлаждают до О °С, отсасывают выпавшие кристаллы на воронке Бюхнера и сушат некоторое время на пергаменте при комнатной температуре. Выход 240—250 г. [c.35]

    Наряду с изучением кристаллических модификаций ЗЮг, существенные успехи достигнуты в теоретическом описании электронных состояний и моделировании структурных характеристик стеклообразньге оксидов кремния наибольшее внимание при этом посвящено аморфному диоксиду (а-ЗЮг) [102, 103, 121, 125, 129, 137—149]. Естественно, что стартовой задачей интерпретации собственно электронно-энергетических свойств a-Si02 является определение атомной конфигурации элемента объема фазы, рассматриваемого далее в качестве репрезентативной модели описываемого соединения. [c.166]


Смотреть страницы где упоминается термин Состояние кристаллическое, и далее: [c.79]    [c.210]    [c.412]    [c.38]    [c.291]    [c.33]    [c.412]    [c.60]    [c.109]    [c.218]    [c.13]    [c.218]    [c.295]    [c.187]    [c.158]    [c.315]    [c.435]    [c.231]    [c.156]    [c.235]    [c.295]    [c.64]    [c.36]   
Конфигурационная статистика полимерных цепей 1959 (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Состояни кристаллическое

Состояние кристаллическое



© 2025 chem21.info Реклама на сайте