Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал группы

    То, что две молекулы притягиваются друг к другу на больших расстояниях и отталкиваются на малых расстояниях, дослужило основанием разделения межмолекулярного потенциала взаимодействия на два независимых члена, один из которых соответствует притяжению и сравнительно медленно убывает с ростом расстояния между молекулами г, а другой соответствует отталкиванию и более резко меняется с г. Приближение независимости сил притяжения и отталкивания совместно с приближением аддитивности сил (что означает возможность представления потенциала группы молекул N суммой парных потенциалов из N Ы—1)/2 возможных пар) лежит в основе большинства современных теорий межмолекулярного- взаимодействия. [c.25]


    Рассмотрим для примера образование МО при сопряжении бензольного кольца с карбонильной группой С = О, уровни энергии которой приведены на рис. 23. На рисунке показано наиболее вероятное расположение тг-МО бензола и группы С = О 38]. Как видно, в данном случае тс- и тс -МО этой группы расположены ниже тс-МО бензола (ионизационный потенциал группы С = О больше, чем у бензола). Энергии МО тс и тгд, а также тс и тг сильно отличаются друг от друга и поэтому ( 10) вряд ли могут образовывать новые устойчивые МО. [c.84]

    Причины высокого или низкого потенциала группы у различных соединений обсуждались неоднократно [42, 262, 420, 580, 587, 675, 676, 736, 846, 1347, 1435, 1484—1487] . Для разных классов соединений эти причины различны. Прежде всего, согласно уравнению 1.3 [c.68]

    Сопоставляя данные, приведенные в табл. 4.3, с такими характеристиками металлов, как первый потенциал ионизации, работа выхода электрона, радиус иона, электроотрицательность, сродство к электронам и стандартный электронный потенциал в водных растворах, можно прогнозировать энергетические взаимодействия активных групп маслорастворимых ПАВ и металлов, а также ориентировочно оценивать дипольный момент и относительную степень ионности металлсодержащих маслорастворимых ПАВ. [c.202]

    Моющий потенциал (определяемый по ГОСТ 10734—64) зарубежных масел группы S для автомобильных бензиновых двигателей при 250 °С достигает 80—90%, однако при 350 °С он равен 0. [c.15]

    Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т. е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением, и др. Общей мерой передаваемого такими способами движения является работа. Работа в различных случаях может быть качественно своеобразна, но любой вид работы всегда может быть полностью превращен в работу поднятия тяжести и количественно учтен в этой форме. [c.25]

    Рассмотреть особенности строения атомов элементов II группы. Как изменяется первый потенциал ионизации с ростом порядкового номера элементов в главной и побочной подгруппах  [c.241]

    Более высокая химическая активность криптона, ксенона и района по сравнению с первыми членами группы благородных газов объясняется относительно низкими потенциалами ионизации их атомов (см. табл. 38). Для криптона, ксенона и радона эти величины близки к потенциалам ионизации некоторых других элементов (например, потенциал ионизации атома азота равен 14,53 В, атома хлора — 12,97 В). [c.669]


    Взято Б первом (предварительном) опыте 0,8012 г топлива в растворе 25 мл свежеприготовленного щелочного растворителя. Исходи ,1Й потенциал раствора равен —120 мв. Следовательно, топливо мо /кно отнести к I аналитической группе (слт. стр. 319). [c.321]

    Если теперь вернуться к рассмотрению механизма влияния алкильных групп в бензоле, то следует в первую очередь отметить, что их накопление приводит к уменьшению потенциала ионизации и увеличению электронодонорности кольца, а это облегчает образование Л-комплексов. Следовательно, стабильность я-комплексов возрастает от бензола к мезитилену. Между тем считают , что гидрирование протекает тем легче, чем устойчивее комплекс катализатора с гидрируемым веществом. Данные, полученные при гидрировании на каталитических системах триэтилалюминий — ацетилацетонаты железа и никеля, подтверждают это предположение. Однако в случае каталитических систем триэтилалюминий — ацетилацетонаты хрома и молибдена увеличение числа алкильных групп л бензольном кольце приводит к увеличению кажущейся энергии активации, хотя устойчивость я-комплексов при этом должна расти в том же ряду (рис. 8). [c.147]

    Бериллий существенно отличается от остальных элементов группы ПА — сказывается малый раднус г, и большое значение ионного потенциала /г,- (где Z — заряд иона), а также наличие в ионе Ве + лишь одной (гелиевой) электронной оболочки. Значительное поляризующее действие Ве + на анион приводит к тому, что в соединениях бериллия появляется значительная доля ковалентной связи. [c.313]

    Зародышеобразование в паре. В переохлажденных жидкостях и газах кристаллы могут не появляться в течение длительного времени. Причина такой устойчивости метастабильных систем состоит в трудности зарождения новой фазы в переохлажденных или пересыщенных средах. Рассмотрим пересыщенный пар, химический потенциал частиц которого л,1 выше химического потенциала кристалла р,2. Атомы или молекулы, из которых состоит пар, могут при соударениях соединяться в группы из двух, трех, четырех и больше частиц, образуя димеры, тримеры, агрегаты. С другой стороны, часть этих агрегатов распадается вследствие флюктуаций колебательной энергии составляющих их атомов и молекул. В результате в паре устанавливается метастабильное распределение агрегатов по размерам. Аналогичные процессы идут и в растворах. [c.277]

    При установившемся равновесии обменного процесса поверхность ионита и раствор приобретают электрические заряды противоположного знака, на границе раздела ионит — раствор возникает двойной электрический слой, которому соответствует скачок потенциала. Поскольку иониты обладают повышенной избирательной способностью по отношению к определенному виду ионов, находящихся в растворе, ионообменные электроды называются также ионоселективными. Стеклянный электрод является важнейшим среди этой группы электродов. Он представляет собой тонкую мембрану из специального стекла, в котором повышено содержание щелочных составляющих — соединений натрия, лития и др. Согласно теории Б. П. Никольского потенциалопределяющий процесс на границе раствор — стекло заключается в обмене между ионами щелочного металла, например Ма+, содержащимися в стекле, и ионами Н+, находящимися в растворе  [c.484]

    Следующей группой критериев, используемых для характеристики теплообменного аппарата, является группа термодинамических критериев. Из них наиболее простой — коэффициент полезного действия (к. п. д.) теплообменника, часто определяемый как отношение количества тепла, воспринятого теплоносителем низшего потенциала, к количеству тепла, отданному теплоносителем высшего потенциала  [c.295]

    Взаимное расположение новых МО зависит от энергии пепо-деленной пары электронов относительно я-уровней бензола. Чем больше ионизационный потенциал группы В, т. е. чем выше ее З лектроотрицательность, тем ниже расположен уровень энергии неподеленной пары в исходном состоянии, до сопряжения. [c.80]

    Высокоэнергетические соединения характеризуются тем, что в процессе их превращений хотя бы одна из ферментативных реакций переноса группы является высокоэкзергони-ческой. Выражаясь словами Липмана, соответствующий потенциал группы высок, а при переносе он падает. В стандартных условиях изменение свободной энергии представляет собой AGq. При переносе связь, которая раньше соединяла группу с остальной молекулой, разрывается. Это так называемая высокоэнергетическая связь. Конечно, термин не следует понимать буквально. Здесь подразумевается просто высокий потенциал группы. Особенно необходимо помнить, что G всегда выражает свободную энергию (точнее, свободную энтальпию), а не энергию (точнее, энтальпию). [c.66]

    В метаболических процессах эобионтов, возможно, уже участвовали высокоэнергетические соединения. Липман [1158] заметил, что приложение энергии окислительно-восстановительных реакций для увеличения потенциала группы было первым событием на пути к жизни . Образование структурных элементов в сопротивляющихся разрушительному действию внешней среды коацерватных каплях, равно как и образование ранних нуклеиновых кислот, а также механизмов размножения, по-видимому, требовало высокоэнергетических соединений. Но мы ничего об этом не знаем. [c.72]


    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    Все металлы, приведенные в табл. 22.1, можно разделить на три группы. К первой из них относятся металлы, выделяющиеся из водных растворов или совсем без перенапряжения (ртуть), или с очень малым перенапряжением, не превышающим при обычных плотностях тока тысячных долей вол1>та (серебро, таллий, свинец кадмий, олово). Для этой группы металлов (кроме ртути) наибо лее отчетливо проявляются неустойчивость потенциала во времени сложный характер роста катодного осадка и другие особенности свойственные процессу катодного выделения металлов. При про мышленных плотностях тока эти металлы дают грубые осадки Токи обмена для металлов этой группы очень велики. Так, напри мер, ток обмена между металлическо) ртутью и раствором ее ниг рата превышает 10 А-м а между серебром и раствором нитрата серебра достигает 10 А-м  [c.459]

    Вращение метильных групп этана будет свободным только и толг случае, когда можно пренебречь взаимодействиями атомов водорода разных групп СНд. Этот случай осуществляется при температурах значительно выше комнатной, когда энергия, приходящаяся на в])ащеиие вокруг связи С—С, превосходит величину тормозящего потенциала. При более низких температурах аффект взаимодействия атомов водорода полностью проявится, и ориентировка, схематически изображенная па рис. 3 а, окажется предпочтительной перед ориентировкой 3 б из-за отталкивания атомов водорода верхней группы СНз (центры атомов изображены кружками) и нижней, расположенной под плоскостью рис. 3 (пунктирные кружки большего диаметра). [c.190]

    Далее, принимая, что для молекулы этана потенциал торможения Кд = 2750 кал/молъ число максимумов /1 = 3, а приведенный момент инерции метильных групп /црив = 2,65 10 ° сл , находим  [c.197]

    В зависимости от технологии производства установлены следующие группы битумов с постепенно возрастающим потенциалом экссудации 1) низкотемпературные, полученные с использованием перегретого пара или вакуума 2) высокотемпературные, полученные с использованием перегретого пара или вакуума 3) высокотемпературные окисленные битумы 4) кре кинг-остатки жокисленные и окисленные. На потенциал экссудации битумов влияет также вид используемого сырья. [c.20]

    Щелочноземельные металлы более электроотрицательны по сравнению со щелочными металлами, тем не менее все их соединения, за исключением некоторых соединений Ве, являются ионными. Бериллий представляет собой первый пример общей закономерности, согласно которой в пределах любой группы элементы с валентными электронами, характеризуемыми меньщим главным квантовым числом, обладают менее ярко выраженными металлическими свойствами, потому что их валентные электроны расположены ближе к ядру и связаны с ним более прочно. Эта закономерность проявляется в повышении электроотрицательности при переходе к элементам с меньшими атомами в пределах одной группы (табл. 10-4). Бериллий имеет меньщий окислительный потенциал, т. е. более [c.435]

    Зависимость потенциальной энергии (потенциала) со-ударяюш ихся частиц от координат всех N частиц Е = = ( 1,. . ., дзм-в) с геометрической точки зрения есть уравнение гиперпространства потенциальной энергии в конфигурационном пространстве медленной подсистемы, и установление вида зависимости Е = Е(д ,. . ., qзN- ) означает нахождение формы этого гиперпространства. Для произвольной системы в обш ем случае эта задача не решается, и на практике используют различные виды модельных потенциальных функций [13, 24, 26, 281, аппроксимирующих реальный потенциал. В основном их можно разделить на две группы — потенциалы, зависящие только от расстояния между центрами взаимодействующих частиц (и, таким образом, не зависящие от угла), и потенциалы, зависящие от угловой ориентации. Некоторые сферически-симметричные потенциалы представлены на рис. 8. Существует целый ряд других моделей потенциалов [101 (сфероцилиндрические, точечные дипольные, модель Стокмайера и т. д.), которые в том или ином приближении описывают взаимодействие двух частиц с учетом особенностей их строения и которые так же, как и сферически-симметричные потенциалы (см. рис. 8), являются, в сущности, частными формами общего уравнения потенциального гиперпространства Е = Е(д). [c.67]

    Выборы формы предоставления информации о структуре химического вещества во многом определяет ее соответствие структуре. Форма представления — это совокупность соглашений относительно того, как оценивать исследуел1ые объекты. Совокупность соглашений зависит от типа каталитического процесса и может основываться на использовании физико-химических, математических, структурных характеристик вещества. При этом для представления структуры могут быть использованы как ее локальные характеристики (наличие определенного типа индексных групп, определенные значения констант заместителей), так и интегральные (теоретико-информационные инварианты, потенциал ионизации и т. п.). [c.93]

    Титрование навескп топлива в предварительном опыте (щелочной растворитель) показало наличие двух скачков потенциала. Это указывает на присутствие RSE[ и S в топливе (IV аналитическая группа топлива). Титрование повторяют в кислом растворителе (25 мл) с навеской топлива 2,1512 г. [c.322]

    Квантовохимические расчеты электронной структуры гомологических рядов триметил- и триэтиламмониевых катионов показывают как общие тенденции изменения характеристик ионов с ростом радикала, проявляющиеся, прежде всего, в снижении суммарного положительного заряда гоповы катиона, росте структуры и повышении энергий гранич-Hbix орбиталей, так и аыяаляют существенные различия, связанные с оолее сложным распределением электронной плотности на атомах углерода этильных групп. Последнее указывает на необходимость использования карт электрического потенциала для описания взаимодействия анионов с четвертичными аммонийными катионами. [c.158]

    Все пласты месторождений Балаханы, Сабунчи и Раманы характерны тем, что дают высокооктановые нефти основное изменение нефти при переходе от группы пластов к IX горизонту и от свит НКП и КС к КП состоит в увеличении смолистости и снижении потенциала светлых нефтепродуктов. Включая все нефти от верхнего до VIII горизонта включительно в одну [c.53]

    Повышение температуры в области, близкой к критической температуре пропана, приводит к повышению содержания в де-асфальтизате парафино-нафтеновых и моноциклических ароматических углеводородов, улучшающих качество деасфальтизата (рис. 17). Но при этом снижается отбор от потенциала этих групп компонентов. Следовательно, для получения оптимального зыхода деасфальтизата с заданными свойствами необходимо создавать определеиную разность температур между верхом и низом колонны (температурный градиент деасфальтизации). Более высокая температура в верхней часта колонны определяет качество деасфальтизата, так как при этом пропан обладает наименьшей растворяющей способностью по отношению к подлежащим удалению смолисто-асфальтеновым веществам. Постепенное равномерное снижение температуры по высоте колонны позволяет наиболее полно отделить не только плохо растворимые в пропане высокомолекулярные смолы, но и смолы молекулярной массы 700—800 от ценных высокомолекулярных углеводородов, которые при пониженных температурах лучше растворяются в пропане, чем смолисто-асфальтеновые вещества, т. е. создание температурного Г1радиента повышает селективность процесса. Температура низа колонны обеспечивает требуемый отбор деасфальтизата. [c.75]

    Наличие уравнений, описывающих процесс, вне зависимости от возможности их рещения позволяет получать критерии подобия, которые имеют определенный физический смысл. Почленным делением отдельных слагаемых уравнений системы (2.3.3) могут быть получены безразмерные группы Fo = ax/R и Fom = = amx/R — критерии гомохронности полей температуры и потенциала переноса влаги (тепловой и массообменный критерии Фурье). Отношение этих критериев дает критерий Lu == йт/а, представляющий собой меру относительной инерционности полей потенциала переноса влаги и температуры в нестационарном процессе сушки (критерий Лыкова). Критерий Ко = Гс Дц/(с А0) есть мера отношения количеств теплоты, расходуемых на испарение влаги и на нагрев влажного материала (критерий Косо-вича). Специфическим для внутреннего тепло- и массопереноса является критерий Поснова Рп = 6Д0/Ам, который представляет собой меру отношения термоградиентного переноса влаги к переносу за счет градиента влагосодержания. Независимым параметром процесса является критерий фазового превращения е.  [c.108]

    Автор убежден, что построение таксономии опасностей также может привести к появлению в этой области новых подходов к задачам их описания, введения количественных характеристик и управления ими. Автор убежден также, что одно из наиболее существенных затруднений в обсуждении проблемы опасностей связано с отсутствием аналитического подхода. Ранее внимание читателя уже обращалось на трудности использования термина "риск" для обозначения ряда совершенно разных понятий. Кроме того, неспособность осознать, что опасности могут существовать во многих формах и проявлять свой (разрушительный) потенциал разнообразными способами, также приносит вред. Нам представляется важным рассматривать химические опасности как единую группу опасностей среди многих других групп. Хотя опасности и обсуждались в целом ряде работ, таких, как [Lowran e,1976 Rowe,1977 S S,1977 RS,1981 Griffiths,1981], ни в одной из них не было сделано попытки систематизации и классификации опасностей. По существу методология цитированных работ была такова, что изучались отдельные явления без попытки структурного анализа природы опасности этих явлений. Хотя автор не может указать на законченные примеры построения таксономий опасности, это не свидетельствует, конечно, о том, что вообще ничего не было сделано в данном направлении. Однако можно [c.54]


Смотреть страницы где упоминается термин Потенциал группы: [c.320]    [c.410]    [c.230]    [c.374]    [c.439]    [c.440]    [c.467]    [c.507]    [c.182]    [c.435]    [c.11]    [c.90]    [c.313]    [c.317]    [c.8]   
Катализ в химии и энзимологии (1972) -- [ c.255 ]




ПОИСК







© 2025 chem21.info Реклама на сайте