Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барий экстракция

    Руденко и Стары [108] разделяли иттрий и стронций, лантан и барий экстракцией 0,1 Ж раствором бензоилацетона в бензоле. Иттрий и лантан экстрагируются, стронций и барий остаются в водной фазе. Четырехвалентный плутоний отделяли от урана (VI) экстракцией бензольными растворами теноилтрифторацетона [244] и ацетилацетона [488]. Плутоний экстрагируется, уран остается в водной фазе. При использовании ТТА уран извлекали затем раствором реагента в метилизобутилкетоне. Кобальт и никель можно разделить экстракцией их ацетилацетонатов после окисления кобальта до трехвалентного. Коба.льт (III) экстрагируется самим ацетилацетоном, никель остается в водной фазе [17]. [c.167]


    Раствор хлорноватистой кислоты получают, вводя соответствующее количество хлора в охлажденный 8%-ный раствор бикарбоната натрия или 1 и. раствор карбоната натрия. Отсутствие реакции на карбонат с хлористым барием (при нагревании) свидетельствует о достаточном насыщении раствора хлором. Если исходное ненасыщенное соединение нерастворимо в воде, реакцию ведут в водной суспензии при энергичном перемешивании. Газообразные углеводороды обычно вводят под давле- нием около 73 мм рт. ст. (промывная склянка со ртутью) через барботер. Конец реакции определяют по иодкрахмальной бумаге. Полученные хлоргидрины выделяют из реакционной смеси экстракцией эфиром или перегонкой с водяным паром. [c.562]

    Элементную серу определяют, взвешивая остаток после отгонки какого-либо органического растворителя, использованного для ее экстракции, или взвешиванием осадка сульфата бария после ее окисления и осаждения солью бария. [c.61]

    На рис. 27 представлена зависимость экстрагируемости от pH ацетилацетонатов бериллия и некоторых двухвалентных элементов в бензол. Как видно, ацетилацетон количественно экстрагирует бериллий при pH 4—8, магний экстрагируется частично, а кальций, стронций и барий не экстрагируются совсем. Аналогичным образом при изучении экстракции ацетилацетонатов хлороформом было показано [398, 579], что, кроме бериллия, почти количественно экстрагируются А1, Ре, Оа, Н , 1п и и в широком интервале pH Си, Мп, 2п, V экстрагируются частично Сё, Со, Mg, N1, 5г, Ва не экстрагируются [397, 579]. Присутствие [c.127]

    Рпс. 29. Зависимость экстракции бария от его концентрации (и-10 М раствор Ва) [148] [c.168]

    Ход определения. Отмеряют 500 мл анализируемой воды и упаривают в фарфоровой чашке на водяной бане досуха. Затем соскребают сухой остаток со стенок чашки стеклянной палочкой с надетым на нее резиновым наконечником, увлажняют остаток 1—2 мл раствора гидроокиси бария и снова высушивают при 105 °С. Сухой остаток переносят в бумажный патрон аппарата Сокслета, помещают патрон в аппарат и экстрагируют жиры кипящим эфиром. Колба аппарата должна быть предварительно взвешена. По окончании экстракции отгоняют из этой колбы эфир, высушивают ее при 105 °С и снова взвешивают. Разность в массе колбы до и после определения показывает содержание жиров во взятом объеме сточной воды. [c.273]

    Растворите 7 г гидроксида натрия в 30 мл воды и через полученный раствор пропустите ток сернистого газа до получения кислой реакции, после чего еще 5—10 мин насыщайте раствор сернистым газом. Приготовьте раствор, содержащий 5,5 г нитрата натрия в 9 мл воды, охладите его смесью льда с солью и добавьте по каплям при непрерывном перемешивании полученный ранее раствор гидросульфита натрия. Следите за тем, чтобы температура не поднималась выше 0°С. Раствор перелейте в круглодонную колбу, добавьте воды до объема 150 мл и нагрейте до кипения на электрическом колбонагревателе. К нагретой смеси добавьте раствор ВаСЬ- 2 Н2О (37 г в 45 мл воды). Отфильтруйте сульфат бария и упарьте раствор в фарфоровой чашке сначала на газовом пламени до Д исходного объема, а затем на водяной бане досуха. Чашку быстро охладите и извлеките из нее осадок. Для экстракции из осадка хлорида гидроксиламина измельчите его, перенесите в колбу с обратным холодильником, налейте 30 мл этанола и нагрейте до кипения на электроколбонагревателе [c.169]


    Для определения дициандиамида в таких смесях рекомендуется экстракция ацетоном, при чем дициандиамид определяется в экстракте после превращения в гуанилмочевину. В случае применения метода Harger a рекомендуется следующее видоизменение. Растирают 20 г пробы с 50 см3 воды, после чего прибавляют 100 см3 насыщенного раствора азотнокислого бария и затем гидрата окиси бария до щелочной реакции смеси по лакмусу. Доводят объем до 500 см3 и берут 200 см3 для анализа. В присутствии органических веществ, которые образуют желатинообразные осадки с пикриновой кислотой, (например, мука хлопкового семени), следует прибавить раствор уксуснокислого свинца [c.117]

    NH3 (800 °С), С (1400 °С). Ил нрир. сырья выделяется с примен. разл. осадительных, экстракц. и ионообменных методов Ра м. 6. получен нри переработке ядерного топлива реакторов с торий-урановым циклом. Пром. нроиз-ва не существует. Металлич. Ра можно получить восст. Рар4 барием при 1500 °С в лаб. выделено ок. 150 г Ра. Изотоп Ра (7 i/j 27 сут) — промежут. звено при получ. из [c.483]

    Ниже описывается методика получения дифениламин-4-сульфоната натрия экстракцией нейтрализованного едким натром водного раствора сульфомассы не смешивающимися с водой спиртами [5], При этом в спиртовой раствор переходит только натриевая соль моносульфокислоты дифениламина, а динатриевая соль дисульфокислоты остается в водиом растворе. Последующее превращение натриевой соли дифенил-амин-4-сульфокислоты в бариевую соль этой кислоты легко достигается обработкой водного раствора натриевой соли раствором хлористого бария. [c.66]

    В Колбе 14 в атмосфере азота приготовляют раствор бутиллития его концентрацию определяют двойным титрованием. Углекислый газ получают в колбе /, очищают пропуская через промывную склянку 4, охлажденную до —80 , и переводят в емкость 3. Требуемый объем бутиллития передавливают азотом в калиброванный реакционный сосуд 7 через фильтр из стекловаты 13. Трубка 10, которую можно охлаждать сухим льдом, содержит эфирный раствор галогенидов после внесения этого раствора в сосуд 7 образовавшийся литийалкил промывают безводным эфиром, который хранится в сосуде 8 над металлическим натрием эфир под азотом выпускают через сифон 6 в эвакуированный сосуд, погруженный в охлаждающую смесь. (Сухой литийалкил при соприкосновении с воздухом Воспламеняется.) Смесь перемешивают закрытой магнитной-мешалкой 11, два внешних стержневидных магнита 9 которой вращаются мотором. Неабсорбированную или выделившуюся при окислении реакционной смеси двуокись углерода вымораживают в сосуде 3, а затем потоком азота подают в колонку 2 со-щелочью. Реакционная система соединена с вакуумным насосом в точке 5 чистый азот можно ввести в точке 12. В перемешиваемый раствор 23,8 ммоля н-бутиллития в 29 мл эфира прибавляют в течение 5 мин 4,74 ммоля высушенного в вакууме га-броманилина, растворенного и мл эфира. Раствор по мере прибавления веществ охлаждают и перемешивают еще в течение 1,5 час после того, как начнет выделяться ярко-желтый осадок литийорганического соединения. Этот осадок появляется через 20—40 мин в зависимости от срока хранения образца к-бутиллития. Увеличение продолжительности реакции от 1 до 3 час не влияет на выход. Тонкий, быстро выпадающий осадок промывают безводным эфиром до тех пор, пока количество непрореагировавшего бутилллития не-уменьшится до вычисленной величины 0,1 %. Затем литийалкил суспендируют в эфире, систему откачивают и проводят карбонизацию при —80° с 1,029 ммоля радиоактивной двуокиси углерода. Реакционную смесь подкисляют 8 л(л 6 н. раствора соляной кислоты и помещают в экстрактор Сокслета. В течение 4—8 час проводят непрерывную экстракцию эфиром эфирный слой отбрасывают. Водный раствор подщелачивают едким кали и экстракцию повторяют. Затем водный раствор доводят до pH 3 и экстрагируют га-аминобензойную кислоту эфиром в течение 8 —16 час. Отогнав эфир, получают неочищенную га-аминобензойную кислоту (т. пл. 184—185°) с выходом 32,8% в расчете на использованный карбонат бария или 48,2% в расчете на прореагировавшую двуокись углерода. [c.681]

    Разделение и концентрирование имеют много общего как в теоретическом аспекте, так и в технике исполнения. Методы дпя решения задач одни и те же, но в каждом конкретном случае возможны модификации, связанные с относительными количествами веществ, способом получения и измерения аналитического сигнала. Например, дпя разделения и концентрирования применяют методы экстракции, соосаждения, хроматографии и др. Хроматографию используют главным образом при разделении сложных смесей на составляющие, соосаждение — при концентрировании (например, изоморфное соосаждение радия с сульфатом бария). Можно рассмотреть классификацию методов на основе числа фаз, их агрегатного состояния и переноса вещества из одной фазы в другую. Предпочтительны методы, основанные на распределении вещества между двумя фазами такими, как жидкость— жидкость, жидкость— твердое тело, жидкость—газ и твердое тело—газ. При этом однородная система может цревращаться в двухфазную путем какой-либо вспомогательной операции (осаждение и соосаждение, кристаллизация, дистилляция, испарение и др.), либо введением вспомогательной фазы — жидкой, твердой, газообразной (таковы методы хроматографии, экстракции, сорбции). [c.210]


    К 100 мл 15—18 %-ной серной кислоты при охлаждении льдом постепенно прибавляют пероксид бария ВаОз в таком количестве, чтобы раствор сохранял слабокислую реакцию ( 40 г). Образовавшийся раствор пероксида водорода сливают с осадка Ва304. Если нужно, раствор концентрируют. Для этого к нему прибавляют карбонат натрия до щелочной реакции и извлекают Н2О2 эфиром, который должен быть перегнанным. Экстракцию проводят [c.30]

    С , который можно выделить с помощью эфирной экстракции из подкпсленного раствора. Кислый гидролиз или каталитическое гидрирование [2] выделенного препарата в растворе метилового спирта приводит к образованию почти с количественным выходом солянокислого (/-лейцина-1-С . (/-Лейцин-1-С можно подвергнуть рацемизации [5], нагревая его с гидроокисью бария при температуре 160—170° в запаянной ампуле. Из полученного рацемата можно вновь выделить дополнительное количество /-лейцина-]-С .  [c.227]

    Глюкоманнаны. Основным источником глюкоманнанов являются гемицеллюлозы голосеменных растений. В меньшей степени они встречаются также в древесине покрытосеменных. Для экстракции этих полисахаридов из древесины проводят предварительную обработку делигнифицированно-го материала щелочью для удаления ксиланов. Глюкоманнаны затем растворяют в водной гидроокиси натрия, содержащей борат-ион . Для фракционирования используют обычно получение нерастворимых в воде комплексов с катионами меди или бария . [c.527]

    Институтом технической химии исследовательского центра Карлсруэ (ФРГ) разработана и реализована в промышленном масштабе технология очистки от масел шлифовальных шламов. Она предусматривает экстракцию масляной фазы жидким СО2 при температуре 50-130°С и давлении 100-700 бар в замкнутом цикле использования углекислого газа. Выделяемые масла вновь используются в технологическом процессе производства. Очищенный металл с влажностью менее 1% отправляется на переработку (РгбЬс11сЬ). [c.120]

    Качество почвы. Экстракция следов элементов, растворимых в воде Качество почвы. Определение потенциальной катионообменной емкости и способных к обмену катионов с применением буферного раствора хлорида бария при pH = 8,1 Качество почвы. Биологические методы. Определение азотной минерализации и нитрофикации в почвах и влияние химикатов на эти процессы [c.543]

    Известна характеристика галактана, арабиноксилоглюкана, 4-0-метилглюкуроноксилана клеточных стенок средних жилок листьев табака [150]. Из этого сырья посредством экстракции 25%-ным гидроксидом натрия в присутствии 5%-ной борной кислоты с последующей очисткой за счет осаждения из раствора гидроксидом бария, использования ионообменной хроматографии и гель-фильтрации выделен галактоглюкоманнан. На основе результатов, полученных при метилировании, ферментативном гидролизе, спектроскопии С-ЯМР, показано, что этот полисахарид построен из (1— -4)-связанных остатков -D-глюкопираноз и -D-маннопираноз [c.127]

    Более удобным способом получения г ис-гликолей является проведение гидроксилирования с помощью подходящего окисляющего агента и использование лишь каталитических количеств 0з04. Окислителями могут быть хлораты металлов, перйодаты, кислород и пероксид водорода [18]. При использовании некоторых окислителей основными продуктами могут быть а-оксоспирты, альдегиды илн кетоны, образующиеся при расщеплении двойной углерод-углеродной связи. Хлораты металлов, в частности солн бария или серебра, обычно дают наилучшие результаты. Как правило, алкен (1 моль) растворяют или суспендируют в воде (1500 мл), содержащей 0з04 (0,5г) и постепенно при частом встряхивании в течение нескольких часов добавляют хлорат бария (64 г). Избыток хлората восстанавливают с помощью ЗОг продукт выделяют экстракцией или кристаллизацией. Так, используя эту методику, 4-хлор-кротоновую кислоту превращают в соответствующую дигидро-ксикислоту с выходом 50% [19] [схема (8.5)]. [c.326]

    Описанным методом было получено более 50 партий титаната бария. В качестве исходного сырья использовались при этом следующие соединения безводный дистилляционный четыреххлористый титан, получаемый в качестве промежуточного продукта в производстве титаиа хлористый барий и углекислый аммоний имели квалификацию чистый . Полученные на таком сырье образцы титаната бария анализировались на содержание основных комионентов и нримесей. Пробы титаната бария растворялись в соляной кислоте, после чего титан в растворах определялся окси-диметрически, титрованием бихроматом калия, а барий — трплонометри-чески, после отделения титана экстракцией его купфероната. Точность определения титана составляла 0.5%, а бария +0.8% (абсолютных). Следует отметить, что все образцы не содержали свободных окислов бария и титана, что проверялось фазовым анализом [ ]. Содержание примесей в титанате бария определялось спектральным методом. [c.278]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы разлучают , применяя для этого уже традиционные радиохимические методы — осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии — его двуокись РиОг или фториды — РиРз или РиР4. Их восстанавливают до металла парами бария, кальция или лития. Однако полученный в этих процессах плутоний не годится на роль конструкционного материала — тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему Температура плавления плутония — всего 640° С — вполне достижима. [c.400]

    К азотнокислому раствору урана добавляется серная кислота, в результате чего в осадок выпадают сернокислые соли свинца, бария и радия, а уран в виде нитрата уранила U02(N0з)2 остается в растворе. При прибавлении к раствору соды уран переходит в растворимый карбонатный комплекс с шестивалентным ураном Na4[U02 0з]2, а в осадок переходят такие элементы, как железо, алюминий, хром, цинк и другие металлы, в виде нерастворимых Карбонатов, гидроокисей и основных карбонатов. Прибавлением вновь азотной кислоты получают раствор нитрата уранила, содержащий очень небольшое количество примеси. Для окончательного отделения примесей производят экстракцию нитрата уранила эфиром, при этом верхний слой представляет собой эфирный раствор нитрата уранила, а нижний более тяжелый водный раствор, содержащий примеси, который спускается из колонны. Эфирный раствор нитрата уранила разделяется промывкой водой на эфир, возвращаемый снова в цикл, и чистый раствор нитрата уранила, С помощью перекиси водорода из раствора осаж- [c.421]

    А. М. Гинстлипг и А. А. Барам изучали экстракцию гваякола бензолом из 2% водного раствора гваякола при частоте колебаний 1 Мгц и интенсивности — 6 вт1см в этих условиях удавалось осуществить весьма тесный контакт фаз, не сопровождаемый сколько-нибудь существенным эмульгированием. Результаты опытов по извлечению гваякола бензолом из гваяколовых [c.75]

    Из данных, приведенных в табл. 4, видно, что озвучивание позволяет значительно интенсифицировать процесс экстракции жидкости жидкостью по сравнению с обычными условиями бар-ботажа и механического пермешивания при температурах 10— 20°. Понижение температуры среды до 8—12° не сказывается на уменьшении скорости процесса. [c.76]

    Эффективность разделения методом жидкостной адсорбционной хроматографии может быть значительно повышена, если исследуемую конечну]ю композицию присадки к маслам предварительно упростить за счет выделения одной или нескольрих групп веществ экстракцией, диализом и т. д. В частности, достигнуто более полное препаративное отделение вышеописанным методом жидкостной хроматографии фракции нолиизобутилена, содержащего серу и фосфор, от алкилсалицилатов и алкилфенолятов бария и ральция в результате предварительного удаления парафино-нафтеновых углеводородов масла экстракцией диоксаном (часть ароматических углеводородов, главным образом конденсированных, не экстрагируется диоксаном — см. разд. 111.2.2.1.4). [c.321]

    Хартли проводил реакцию метилсульфата с сухим ферроцианидом калия, нейтрализовал продукт раствором гидроокиси бария, обрабатывал его хлористым барием, отфильтровывал образующийся раствор и упаривал его в вакууме. При последующей экстракции этанолом образовывалось комплексное соединение, которое он назвал хлоридом гексаметилферро-циана. Это соединение отщепляет две молекулы хлористого метила при пониженном давлении и нагревании до 140° в.течение 2—3 час. [c.124]


Библиография для Барий экстракция: [c.692]   
Смотреть страницы где упоминается термин Барий экстракция: [c.466]    [c.428]    [c.32]    [c.294]    [c.350]    [c.31]    [c.277]    [c.64]    [c.445]    [c.495]    [c.590]    [c.1944]    [c.268]    [c.228]    [c.64]    [c.168]    [c.286]    [c.276]    [c.294]    [c.451]    [c.35]    [c.37]   
Фотометрическое определение элементов (1971) -- [ c.372 ]




ПОИСК







© 2025 chem21.info Реклама на сайте