Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий методы отделения

    Для повышения избирательности осаждения урана (VI) рекомендуется применение комплексона III [898, 900]. Добавление комплексона III в анализируемый раствор перед осаждением позволяет определять уран (VI) в присутствии тория и редкоземельных элементов, а также ванадия. Подробное описание соответствующих методик приводится в разделе Методы отделения . [c.69]


    Вследствие незначительной растворимости тетрафторида урана и в особенности двойных фторидов урана-аммония, урана-натрия или урана-калия [173, 275], а также возможности отделения урана от больших количеств циркония, ниобия, тантала, бора, железа, ванадия и других элементов, образующих растворимые фторидные комплексы [275, 991], метод отделения урана (IV) в виде фторидов нашел достаточно широкое применение. Методика осаждения урана (IV) плавиковой кислотой приводится в разделе Весовые методы определения . [c.272]

    Е. С. Пржевальский, Е. Р. Николаева и Н. С. Климова [193] разработали простой метод отделения урана (VI) от ванадия (V), основанный на том, что из водных растворов с pH 0,4—0,5 экстрагируется только ванадий. В этих условиях уран (VI) не взаимодействует с диэтилдитиокарбаматом натрия и вследствие этого не извлекается в органическую фазу. [c.308]

    Фишер и Кунин [269] значительно усовершенствовали метод отделения урана от железа, ванадия и некоторых других элементов, добавляя в исследуемые растворы перед пропусканием их через анионит сернистую кислоту для восстановления Fe (III) и V (V), благодаря чему устранялась сорбция последних анионитом. [c.321]

    Клемент [928] разработал метод отделения молибдена от меди, свинца, хрома, никеля, железа и ванадия с использованием катионита в водородной форме (вофатит Р, амберлит Ш-120, дауэкс 50). Молибден переводят в цитратный анионный комплекс в слабокислом растворе. При пропускании через колонку с катионитом он полностью переходит в фильтрат, а катионы названных металлов поглощаются. При проверке метода на ферромолибдене, никель-молибденовом сплаве и рудах были получены удовлетворительные результаты. [c.133]

    Кобальт содержится в рудах, минералах, сплавах, сталях и других промышленных и природных материалах чаще всего вместе с железом, никелем, марганцем, медью, хромом, молибденом, вольфрамом, ванадием и некоторыми другими элементами. Поэтому большое значение имеют методы отделения кобальта от названных элементов. [c.60]

    Адсорбционная хроматография. Как адсорбент применяется окись алюминия, иногда целлюлоза. Главное внимание обращалось на разработку. методов отделения кобальта от никеля, меди, железа, урана, молибдена, марганца, ванадия, хрома и некоторых других элементов. Характеристика предложенных методов приведена в табл. 17. Хроматографирование на окиси алюминия применяется для качественного анализа катионов метод основан на различной сорбируемости окисью алюминия [c.78]


    Отделение металлов группы сероводорода от тория осуществляют преимущественно двумя методами — осаждением НгЗ в кислом растворе или электролизом . Для некоторых металлов известны также специальные методы отделения. Так, например, для молибдена применяют хлорирование [1122], для вольфрама — селективное растворение пробы металла в смеси НР НМОз, а также хлорирование для отделения таллия используют гидролиз солей тория в присутствии нитрата аммония и метилового спирта [1519]. При анализе чистого ва-надата тория ванадий определяют в присутствии тория титрованием перманганатом калия, вычисляя содержание тория по разности. [c.152]

    Главными методами отделения железа от остальных элементов являются 1) обработка сероводородом в кислом растворе (стр. 83), в результате которой металлы группы сероводорода, например висмут или мышьяк, осаждаются, а железо остается в растворе 2) осаждение сульфидом аммония в растворе, содержащем тартрат аммония (стр. 115) нри этом железо осаждается в виде сульфида железа, а алюминий, титан и другие элементы остаются в растворе 3) осаждение едким натром (стр. 109), в результате которого железо переходит в осадок и отделяется от ванадия, вольфрама, молибдена, мышьяка, алюминия и фосфора 4) сплавление с карбонатом натрия с последующим выщелачиванием плава водой (стр. 511), дающее практически тот же результат, что и предыдущий метод, с тем лишь различием, что алюминий в этом случае обычно отделяется не полностью, хром окисляется и переходит в раствор, а уран частью остается в остатке, частью переходит в раствор 5) извлечение эфиром из разбавленного солянокислого раствора (стр. 161), которое применяется главным образом для удаления большей части железа, если оно присутствует в таких больших количествах, что создаются затруднения при определении других элементов. [c.437]

    Перманганат калия. Определение в сернокислом растворе. Для получения наилучших результатов при титровании железа перманганатом калия анализируемый раствор должен содержать сульфат железа (II), свободную серную кислоту в концентрации 1 20 и не должен содержать других окисляемых перманганатов веществ. Такие растворы получаются после отделений, описанных в разделе Методы отделения (стр. 437), и восстановления цинком или сернистым ангидридом (стр. 442 и 444) или, что менее удовлетворительно, сероводородом (см. выше). Объем раствора перед титрованием должен соответствовать содержанию в нем железа. Титрование обычно проводят на холоду. В присутствии ванадия [c.445]

    Хорошим методом отделения марганца от молибдена, ванадия и подобных им элементов является осаждение его едким натром (стр. 109). Если, кроме едкого натра, применяют еще и перекись натрия или раствор перед осаждением обрабатывают персульфатом калия или персульфатом натрия, то этим методом можно отделить марганец и от хрома. Той же цели можно достигнуть сплавлением с перекисью натрия, выщелачиванием плава водой, кипячением с небольшой прибавкой перекиси натрия, если образуется перманганат, и фильтрованием. [c.497]

    Весьма удовлетворительным методом отделения ванадия от различных элементов является электролиз разбавленного сернокислого раствора с ртутным катодом (стр. 165). При этом железо, хром, кобальт, никель, медь и молибден осаждаются на ртути и отделяются таким образом от ванадия, урана, алюминия и фосфора. Мышьяк частично улетучивается, а частично остается вместе с ванадием в растворе. [c.512]

    Необходимо иметь в виду, что применению всех обычно принятых методов отделения урана мешают двуокись углерода и ванадий. Так, уран количественно осаждается аммиаком, свободным от карбоната аммония, но если аммиак поглотил некоторое количество двуокиси углерода из воздуха, уран осаждается только частично и совершенно не выделяется растворами карбоната аммония. Подобно этому, уран полностью осаждается едким натром, свободным от карбоната натрия, но при условии, если отсутствует ванадий. В присутствии ванадия уран осаждается не количественно или вовсе пе выделяется из раствора. Большинства операций отделения урана целесообразно повторять 2 или 3 раза. [c.524]

    Методы отделения урана от ванадия описаны в гл. Ванадий (стр. 510), от редкоземельных элементов на стр. 622 и от ниобия и тантала па стр. 666. [c.525]

    В разделе Методы отделения (стр. 524) было указано, что в солянокислых и сернокислых растворах купферон образует нерастворимое соединение с ураном (IV). Уран (VI) при этом не осаждается. Поэтому в некоторых случаях целесообразно определять уран следующим образом. Сначала проводят осан дение купфероном из раствора, содержащего уран в шестивалентной форме. Осадок отфильтровывают и в фильтрате, после разрушения купферона и восстановления цинком, как это описано в разделе Объемное определение восстановлением цинком и титрованием перманганатом (стр. 529), осаждают уран (IV) купфероном. Таким путем железо, ванадий, титан и цирконий отделяются от урана, а затем уран в свою очередь отделяется от алюминия и фосфора. Хром (II) также частично осаждается купфероном, но его влияние можно устранить, подвергнув раствор действию воздуха, как указано выше (стр. 529). [c.531]


    Известный интерес представляет метод отделения ванадия, железа, циркония, титана, ниобия и тантала от хрома, основанный на осаждении этих элементов купфероном (стр. 143). [c.591]

    Определение можно заканчивать также объемным путем (см. Методы отделения урана, п. е — Отделение от ванадия р, стр. 478). Ф. Л".] [c.474]

    Жидкостная экстракция является, вероятно, наиболее распространенным методом отделения ванадия (V). Используют экстракцию хелатов и ионных ассоциатов, часто в комбинации с после- [c.246]

    Преимуществами этого метода являются получение осадков, легко отделяемых фильтрованием, и малое соосаждение. Осаждаются алюминий, хром (П1), железо (HI), титан (IV), цирконий (IV), торий (IV), церий (IV), висмут, олово (IV) в растворе остаются ванадий (V), кобальт, никель, марганец, цинк, кадмий, ртуть (II) и щелочноземельные металлы. Это один из лучших методов отделения алюминия от цинка. При pH 3,5—4,0 можно осадить алюминий, отделяя его от бериллия, а затем при pH больше осадить бериллий. [c.87]

    Разделение электролизом с ртутным катодом. Это метод отделения алюминия от очень многих элементов. Обычно отбирают такую порцию раствора, чтобы в ней было от 10 до 100 мкг алюминия. Электролиз проводят в среде 8 и. серной кислоты при силе тока 3—5 а. Применяют прибор, описанный на стр. 240. Так отделяют 1 г меди или железа в течение 1 ч, 1 г олова, сурьмы, свинца или цинка в течение 2—3 ч. В растворе остаются алюминий, бериллий, ванадий, редкоземельные элементы, щелочные и щелочноземельные элементы и т. п., а также в небольшом количестве марганец. [c.698]

    Описанный метод отделения мешающих элементов с помощью NaOH наиболее быстрый, но следует учесть, что вместе с алюминием в фильтрат переходят ванадий и молибден если титровать медленно при энергичном перемешивании, то последний не мешает 1712]. Влияние ванадия устраняют добавлением 30%-ной перекиси водорода [712]. [c.211]

    Принцип метода отделения урана от ванадия и молибдена, предложенный Н. Т. Воскресенской [213], состоит в избирательном извлечении последних из колонки катионита ПФСК 5%-ным раство- [c.324]

    Se и Те экстрагируются хлороформным раствором трибутнл-амина из 5—6 А НС1. Селен реэкстрагируется разбавленным раствором соляной кислоты, а теллур — водой, что может быть использовано для их разделения. Сп экстрагируется из 7 А" НС1 на 30%, серебро хорошо извлекается из разбавленного раствора соляной кислоты. Кадмий и Hg из 1 —8 N НС1 экстрагируется на 97%, Ga i полностью извлекается из 4А НС1, индий из б—7 N H I экстрагируется на 87, — на 90 и марганец на 12%. Полученные результаты использованы для разработки экстракционного метода отделения железа от хрома, хрома от титана и ванадия, ванадия от титана. [c.237]

    Несмотря на то, что методы осаждения, основанные на фотохимическом переведении определяемого элемента или вещества в осаждаемую форму, имеют отмеченный выше недостаток, они все же находят практическое применение. Например, Сингх и Патнаик [376] разработали метод отделения урана от железа и ванадия, основанный на фотохимическом восстановлении этанолом урана(У1) до ура-на(1У) в растворах, содержащих фторид аммония, и образовании малорастворимого фторида урана(1У). К анализируемому азотнокислотному раствору, содержащему 0,3—0,4 2 урана, прибавляют 2,5 г бифторида аммония, устанавливают pH = 2,0 2,5, вводят 45 мл этанола и разбавляют водой до 150 мл. Полученную смесь облучают солнечным светом 4—5 ч. Выделившийся осадок ЫН4 -ир4-Н20 отфильтровывают и промывают смесью этанола с водой (1 9). [c.115]

    Разработан метод отделения микрограммовых количеств молибдена от титана, тантала, ниобия, гафния, циркония, ванадия и вольфрама и приведены данные по определению примеси молибдена в этих металлах ортонитрофенилфлуороном. [c.120]

    Применение того или иного метода отделения молибдена- от других элементов, естественно, зависит от характера анализируемого материала и от принятого хода анализа. Обьгано в одной из стадий анализа молибден выделяют из раствора в виде сульфида Мо8з. Количественное осаждение Мо8з, хотя он и нерастворим в неокисляющих кислотах, связано с большими затруднениями, особенно осаждение из солянокислых растворов, или из растворов, содержащих такие примеси, как ванадий. Неполнота осаждения сульфида вызывается частичным восстановлением молибдена сероводородом. Восстановленное соединение осаждается крайне медленно, даже под давлением, и единственный способ, который дает возможность полностью выделить молибден из раствора, заключается в следующем. [c.357]

    Посторонние вещества, восстанавливающиеся в редукторе с образованием растворимых соединений, должны отсутствовать. К этим веществам относятся азотная кислота, органические соединения, нолитионовые кислоты, соли железа, хрома, титана, мышьяка, сурьмы, ванадия, урана, вольфрама и ниобия. Применяемые методы отделения, естественно, зависят от характера присутствующих посторонних элементов и должны соответствовать методам, приведенным в разделе Методы отделения . Так, разрушение органических веществ обьгчно достигается обработкой горячего концентрированного сернокислого раствора азотной кислотой. Последующим повторным выпариванием раствора до появления паров серной кислоты удаляют азотную кислоту Двукратное осаждение аммиаком, при наличии в растворе избытка железа, служит для отделения железа, хрома, титана, мышьяка, сурьмы, ванадия, урана и ниобия. Для отделения молибдена от вольфрама и политионовых кислот аммиачный фильтрат обрабатывают винной кислотой и сероводородом, фильтруют, фильтрат подкисляют и затем снова фильтруют.  [c.362]

    Вероятно, одним из лучших методов отделения железа от других элементов нри анализе горных пород и подобных им материалов является осаждение его сульфидом аммония в присутствии тартратом (стр. 115) после предварительного отделения сероводородной группы сероводородом в растворе, содержащем минеральную и винную кислоты Этим методом железо может быть отделено от алюминия, титана, циркония, ниобия, тантала, урана, ванадия и фосфора. Элементы, сопровождающие железо при этом разделении, — никель, кобальт, цинк и маранец (частично) — редко встречаются в горных породах и легко отделяются, например никель и марганец, осаждением железа аммиаком. Сульфид железа для дальнейшей обработки нужно растворить. Для этого возможно два метода  [c.438]

    Из других методов отделения ряда элементов от марганца следует отметить осаждение купферондм (стр. 143), в результате которого железо, титан, цирконий и ванадий могут быть количественно отделены от марганца электролиз с ртутным катодом в разбавленном сернокислом растворе (стр. 165), при котором осаждаются железо, хром, никель и молибден, а марганец оста ется в растворе извлечение железа и молибдена из солянокислых растворов из хлоридов эфиром (стр. 161) и осаждение железа, алюминия и хрома карбонатом бария.  [c.497]

    Большинство методов отделения ванадия можно классифицировать в зависимости от того, служат ли они для переведения ванадия в осадЬк или в фильтрат. Так, например, ванадий обычно переходит в осадок вместе с другими элементами ири осаждении аммиаком он осаг дается вместе с фосфоромолибдатом аммония, при выпаривании с азотной кислотой,. а также при осаждении нитратом ртути (I), ацетатом свинца и купфероном. В раствор ванадий переходит при сплавлении с перекисью натрия или карбонатом натрия с селитрой и последующем выщелачивании плава - водой, при осаждении едким натром или сероводородом из кислого раствора. Кроме того, для отделения ванадия от других элементов используются электролиз с ртутным катодом, экстракция эфиром из разбавлен- ного (1 1) солянокислого растврра (при которой отделяются железо и молибден) и отгонка ванадия в струе сухого газообразного хлористого водорода. [c.509]

    В продуктах, богатых ванадием, для отделения его основной массы перед определением других элементов удобно пользоваться отгонкой в токе хлористого водорода В этом методе струю сухого газообразного хлористого водорода пропускают над сухой пробой, находящейся в лодочке, помещенной в стеклянной трубке, которую для лучшего удаления ванадия можно слегка 1[агревать. Летучий оксихлорид ванадия может быть поглощен водой и затем крличественно определен. При прохождении хлористого водорода ванадий частично восстанавливается и перестает отгоняться. Поэтому содержимое лодочки целесообразно окислить выпариванием с азотной кислотой, после чего отгонку ванадия предол-жить. Эту операцию повторяют до тех пор, пока не прекращается образование коричневого дистиллята. Молибден и мышья отгоняются совместно с ванадием. Железо также сопровождает ванадий, если слишком сильно нагревать трубку. Этот метод может сочетаться с бперацией обработки исходной пробы азотной кислотой. В этом случае высушенный нерастворимый остаток и выпаренный досуха азотнокислый фильтрат лучше обрабатывать хлористым водородом порознь [c.512]

    Известный интерес представляет метод отделения таллия от ряда элементов, основанный на экстрагировании хлорида таллия (III) эфиром из раствора в 6 н. соляной кислоте (стр. 161). Таллий количественно выделяется в виде металла при восстановлении металлическим цинком или магнием в слабосолянокислом или сернокислом растворе и отделяется таким образом от многих элементов. Образующаяся при этом металлическая губка легко окисляется воздухом или растворенным кислородом, и ее следует спрессовать в комок стеклянной палочкой. Большую часть раствора сливают и осадок быстро промывают декантацией свеже-прокипяченпой водой. Таллий можно отделить от ванадия, алюминия и циркония электролизом разбавленного сернокислого раствора, с применением катода из цинковой амальгамы [c.539]

    Купфероновый метод можно применять к любому раствору горной породы, не содержащему кремния, элементов группы сероводорода и больших количеств фосфора. Обычно этот метод служит для отделения титана вместе с цирконием, железом, ванадием и пр. (стр. 145) от алюминия, хрома, а также фосфора, за исключением тех случаев, когда последний присутствует в значительных количествах и сопровождается циркониелг, торием или титаном. Тогда сначала сплавляют пробу с карбонатом натрия, выщелачивают плав водой, остаток переводят в сернокислый раствор (иногда применяя для этого сплавление с пиросульфатом) и в этом растворе проводят осаждение купфероном. Тем же способом удаляют и ванадий. Металлы сероводородной группы могут быть удалены из сернокислого раствора обработкой сероводородом (стр. 83), после чего удаляют железо прибавлением винной кислоты и сульфида аммония (стр. 90). Эти методы отделения служат для удаления всех мешающих веществ, кроме циркония. Фильтрат после отделения сульфида железа подкисляют, осаждают титан и цирконий купфероном, осадок прокаливают и взвешивают сумму окислов обоих металлов. Содержание титана находят затем по разности после сплавления смеси окислов с пиросульфатом, растворения плава в серной кислоте и определения циркония в виде нирофосфата (стр. 640). [c.968]

    Полярографическое определение металлических примесей в висмуте не представляется возможным проводить без их предварительного отделения. Так, определение свинца проводят после его электролитического отделения в виде РЬОа с дополнительной очисткой от висмута тиомочевиной [36]. Описан метод отделения висмута от свинца путем растворения висмута в ртути, микропримесь переводят в водный раствор и полярографируют [37], Медь отделяют рубеановой кислотой [38] в присутствии цитрата калия и ЫН40Н, удерживающих в растворе висмут и другие элементы. Селен определяют методом осциллографической полярографии [27] после осаждения его в элементарном виде с коллекторами. Показано, что возможно отделить 1—10 мкг 8е от 2—10 г В1. Достигнута высокая чувствительность определения—10- %. Условия электролитического выделения висмута из азотнокислых растворов были подробно изучены при определении свинца, кобальта, кадмия и цинка [25] на фоне роданида калия, а также никеля [39], молибдена и ванадия [40]. [c.327]

    Комплексоно-фосфатный метод отделения урана при его определении в минералах. Переведение урана в раствор осуществляется обработкой навески минерала нагреванием с соляной кислотой и перекисью водорода и последующим выпариванием со смесью серной и азотной кислот. Метод основан на выделении урана в виде фосфата уранила с применением в качестве сооса-дителя соли титана в присутствии комплексона III (натриевая соль ЭДТА) для удержания в растворе других элементов (железа, алюминия, хрома, меди, никеля, лантанидов, ванадия, молибдена и т. д.). Осадок переводится в раствор в виде комплексной соли раствором карбоната натрия. [c.318]

    Недавно был предложен хроматографический метод отделения граммовых количеств ванадия от миллиграммовых количеств урана, основанный на поглощении карбонатного комплексного аниона [и02(С0з)з] " при пропускании анализируемого раствора через ионит—амберлИТ IRA - 400 [4]. Ванадий, присутствующий в виде VOg-HOHa, по данным автора, поглощается незначительно. [c.227]

    Высокоселективный метод определения титана разработал Маюмдар с сотрудниками [50]. Этот метод оснвван на осаждении титана купферроном из растворов, содержащих комплексон и достаточное количество ацетата аммония. Затем в фильтрате после подкислеиия концентрированной соляной кислотой можно осадить железо, цирконий или ванадий. Другой метод отделения титана основан на осаждении его таннином (совместно с танталом и ниобием) из растворов, содержащих щавелевую и этилендиаминтетрауксусную кислоты и имеющих pH 4,5. Согласно авторам [51], уже одно осаждение гарантирует полное отделение упомянутых элементов от целого ряда остальных. Метод был практически испытан при определении общего содержания окислов металлов в различных минералах (рутил, ильменит, самарскит и т. п.). [c.541]

    Окспкпслоты и их солп очень широко используются в по-.лярографнц в качестве комплексообразователей. Благодаря их применению появилась возмоншость полярографического определения титана в бокситах, сталях [9], горных породах, минералах [10], мыле [11] п других материалах. Показана возможность определенпя титана в сталях (без отделения его от железа и ванадия) методом осциллографической полярографии прп прпмепениц насыщенного раствора оксалата натрия, [c.363]

    Методы отделения ванадия подробно рассмотрены в монографии Коркиша [6]. [c.246]


Смотреть страницы где упоминается термин Ванадий методы отделения: [c.336]    [c.173]    [c.403]    [c.359]    [c.129]    [c.339]   
Фотометрическое определение элементов (1971) -- [ c.128 , c.129 ]

Колориметрические методы определения следов металлов (1964) -- [ c.831 , c.833 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения



© 2025 chem21.info Реклама на сайте