Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентные электроны в соединениях теория Льюис

    В начале настоящей главы мы расскажем о том, как атомы могут объединяться в молекулы. Рассмотрев различные типы связей, которые существуют в органических соединениях, мы обсудим теорию молекулярных орбиталей и применение этой теории для описания связей в некоторых малых молекулах. Затем мы перейдем к теории отталкивания электронных пар валентной оболочки и к понятию гибридизации, которые помогут нам представить образование связей в более сложных молекулах. Далее мы кратко расскажем о том, как структуры Льюиса используются для представления органических молекул. Часть этого рассказа будет посвящена расчету заряда ( формального заряда ) на атомах в молекулах. Наконец, мы остановимся на очень важной для понимания строения и реакций органических соединений теории резонанса. [c.27]


    Главное в учении о ковалентной связи — обобществление валентных электронов. В молекуле водорода обобществляются оба электрона от каждого атома водорода, которые и являются валентными. При этом одна обобществленная электронная пара соответствует одной валентности в теории химического строения Бутлерова. Общая электронная пара, ответственная за химическую связь, иначе называется поделенной парой электронов. Возникновение кратной — двойной и тройной — связи сопровождается образованием соответственно двух и трех поделенных электронных пар. Соединение атомов азота с возникновением трех ковалентных связей (тройная связь), по Льюису, можно представить следующим образом .  [c.86]

    Некоторую определенность в представлении о природе главных и побочных валентных сил внесла теория электронных пар Льюиса, которая качественно объясняла образование комплексных соединений с нейтральными молекулами (аммиак, вода). [c.270]

    Изучение неорганических металлсодержащих соединений свыше ста лет было в значительной степени описательным, что в то время было характерно для всей химии вообще. Настоящий теоретический прогресс в понимании структуры и поведения неорганических соединений был невозможен вплоть до от крытия электрона в 1897 г. Это открытие дало толчок развитию электронной теории валентности, и с этого времени теоретическая неорганическая химия стала быстро развиваться. Этому способствовали главным образом работы пионеров в области химии координационных соединений — Льюиса, Косселя, Лэнгмюра, Сиджвика, Фаянса, Полинга, а также многих других ученых, распространявших и пропагандировавших их идеи. [c.230]

    Связь в органических соединениях осуществляется также при помощи электронов. Однако в силу того, что валентные электроны атома углерода удерживаются прочно, здесь не наблюдается полного перехода электронов из одного атома в другой, а имеет место сдвиг валентного электрона в сторону другого атома таким образом, что электрическое поле электрона теперь заходит в этот чужой атом, не оставляя, однако, в то же время и своего коренного атома (Беркенгейм, 1916). Таким образом, электрон этот становится общим для двух связанных друг с другом атомов. Одним из важных дальнейших этапов развития электронных представлений в области органической химии явилась теория Льюиса, утверждавшая, что связь в органических соединениях осуществляется не одним, а парой электронов, которые становятся общими для связанных друг с другом атомов. [c.32]


    Главная валентность по этой теории интерпретируется как результат электровалентности, или переноса электрона, а побочная валентность рассматривается как проявление ковалентности, или обобществление электронных пар, принадлежащих присоединяемым нейтральным или заряженным лигандам. Согласно Льюису и Сиджвику, подобная связь называется координационной (иначе, семиполярной, донорно-акцепторной). Эта связь признается в настоящее время главным типом связи в комплексных соединениях. [c.14]

    Первую попытку объяснить связь в комплексах металлов предпринял Сиджвик на основе октетной теории Льюиса [1]. Лиганды рассматривались как основания по Льюису —они отдают электроны обычно одну пару электронов) иону металла, г. е. кислоте по Льюису. Конфигурации благородных газов давно считались устойчивыми. Сиджвик предложил правило определения состава комплекса, по которому сумма электронов металла и электронов, переданных лигандами, должна стать близкой или равной 36 (как у Кг), 54 (как у Хе) или 86 (у Нп). Помимо того, что это правило Сиджвика неудачно, так как имеет дело с различными числами электронов для разных благородных газов, оно еще и часто не выполняется — соединения имеют другую стехиометрию. Предложено модифицированное правило Сиджвика — правило 18 электронов, т. е. валентная оболочка должна иметь электронную конфигурацию Х( — 1) °пр . Правило 18 электронов очень часто используют для предсказания состава различных металлорганических соединений, особенно карбонильных и нитрозильных. [c.405]

    Согласно теориям Косселя и Льюиса, излагаемых в курсах неорганической химии, атомы различных элементов (особенно стоящих в начале и в конце периода периодической системы), вступая в химическое соединение, отдают или получают валентные электроны при этом один из атомов заряжается положительно, другой отрицательно образуются ионы возникающее электростатическое взаимодействие между ионами приводит к образованию молекулы. Здесь мы имеем дело с гетерополярной связью (ионной). Так, например, атомы металлов легко теряют свои валентные электроны, а атомы неметаллов (металлоидов), напротив, стремятся присоединить добавочные электроны при этом возникают устойчивые катионы и анионы. [c.39]

    Теория Г. Льюиса охватывает и ионные соединения. Например, при взаимодействии натрия и хлора валентные электроны атомов натрия с одиночными электронами атомов хлора образуют общие пары в ионных соединениях. Связь между ионами имеет электростатический характер, чего нельзя сказать о связях в атомных соединениях. Таким образом, хотя и имеется разница между ковалентной и ионной связями, но есть и некоторые общие для них черты, что и является подтверждением единства материального мира. [c.75]

    Определение ковалентной связи, данное Льюисом для идентичных атомов элементов, следует распространять на соединения весьма осторожно. В то же время считается, что чистой ионной связи не существует, а наиболее к ней приближающимся соединением является фтористый литий. Итак, в общем случае неорганического соединения MX, где X обозначает атом Цинтля, имеем химическую связь промежуточного характера, о которой в настоящий момент нет ни полных сведений, ни связной теории. Мы говорили (см. гл. 1,5) о понятии резонанса, которым заменяют прямое представление об ансамбле внутриатомных сил при помощи разложения его на две простые фиктивные конфигурации. Комбинация конфигураций как бы восстанавливает изучаемый ансамбль. Для этого случая подходит подобный прием и, как Сыркин и Дяткина [38], можно допустить, что для молекул, подобных НС1, волновая функция валентного электрона может быть выражена в виде  [c.50]

    Как видно уже на примере углерода, обычная для того или иного элемента валентность может соответствовать не основному (нормальному), а возбужденному состоянию его атома. При общей оценке возможностей валентного использования возбужденных состояний спиновая теория руководствуется т. н. правилом октета (Льюис, 1916 г.), согласно которому валентный слой атома в химическом соединении становится полностью завершенным при восьми электронах. Тем самым структуры с большим числом валентных электронов около одного атома признаются невозможными, т. е. на них налагается запрет. [c.231]

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]


    Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона (КЧ). Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Поэтому для одного и того же центрального иона возможны соединения с разными КЧ. Координационное число центрального атома (Иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Вернер ввел поэтому представление об остаточной, или вторичной, валентности, позволяющей атому (иону) присоединять число лигандов большее, чем его валентность, именно равное координационному числу. Так, например, нормальная валентность Со(П1) равна трем, но в Со(КНз) его КЧ = 6 и шести же равна его вторичная валентность. При этом связи всех лигандов с центральным ионом эквивалентны. Льюис с развитием электронной теории объясняет эту эквивалентность тем, что каждая из присоединенных групп (здесь 1 Шз) связана с центральным ионом парой электронов, передаваемой в общее пользование аммиаком. Такая связь получила название координационной или дативной (то же, что и донорно-акцепторная связь). [c.236]

    В теории валентности Льюиса был выделен специальный класс ковалентных связей, для которых два электрона поступают от одного атома. Такие связи были названы координационными, ввиду того, что они имеют отношение к структуре координационных соединений переходных металлов, теория которой была развита Вернером. [c.359]

    Ониевые соединения. Теория Льюиса была первой теорией, которая смогла успешно объяснить три типа валентности, известные в XIX в., а именно способные к ионизации связи и два типа связей, не способных к ионизации, — главные и побочные. Первый шаг в разрешении проблемы побочных валентностей в общем ввде на основе электронной теории был сделан Хегинсом [1], высказавшим мысль, что атомы, имеющие необобщенные электроны, могут обобщить их с другими атоллами или ионами, имеющими незаполненные октеты. Некоторые относящиеся сюда примеры приведены в Приложении I (строение хлористого аммония, серной кислоты). Несмотря на то, что эта концепция широко известна, полезно уделить немного внимания рассмотрению некоторых важных примеров применения ее в области органической химии. [c.49]

    В 1916 г. В. Коссель выдвинул предположение, что при образовании химической связи происходит передача электронов от одного атома к другому в результате образуются заряженные частицы, которые притягиваются друг к другу. Это представление правильно отразило природу ионной (гетерополярной, электровалентной) связи, характерной для большинства неорганических соединений. Однако было ясно, что в таких молекулах, как водород Нз, хлор С1г, метан СН4, и в более сложных органических соединениях природа связи должна быть иной. Основы для понимания этого типа связи были заложены в работах Г. Льюиса и И. Ленгмюра (1913— 1920 гг.), указавших на особую роль октета электронов как устойчивой электронной оболочки и на возможность создания октета не только путем передачи, но и путем обобщения электро1Юв. От этих работ ведет свое начало представление о существовании особого типа связи (ковалентной, гомеополярной), осуществляемой парой электронов. Так валентная черточка классической теории строения получила физическое истолкование. И все же перед учеными продолжали стоять вопросы почему именно электронная пара необходима для создания ковалентной связи, почему устойчив именно октет электронов, в каком состоянии находятся связующие электроны Поиски ответа на эти вопросы с помощью зародившейся в середине 20-х годов квантовой механики явились одним из направлений дальнейшего развития теории химической связи. Для судьбы электронных представлений в органической химии важнейшее значение имело и развитие в другом направлении объяснение с новых позиций богатого экспериментального материала органической химии предсказание новых, еще неизвестных экспериментальных фактов. [c.38]

    Начало XX в. ознаменовалось большими успехами атомной н и молекулярной физики. Этот период характеризуется переходом от ( юрмальных представлений о валентности к электронной теории Льюиса и Косселя (1916—1917), согласно которой каждому валентному штриху в структурной формуле соответствует связевая электронная пара и понятие валентности было отождествлено с числом неспаренных электронов внешней оболочки атомов. Эта теория объяснила насыщаемость ковалентных химических связей и ненасыщаемость ионных, а также привела к пониманию зависимости валентности не только от природы атома, но и от его окружения. Однако и электронная теория оказалась недостаточно строгой, поскольку она не могла объяснить валентность без дополнительных данных о геометрической структуре соединений. [c.263]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Строение органических соединений. Для орг. соед. характерны неполярные ковалентные связи С—С и полярные ковалентные связи С—О, С—N, С—Hal, С—металл и т.д. Образование ковалентных связей было объяснено на основании развитых Г. Льюнсом и В. Косселем (1916) предположений о важной роли электронных образований-октетов и дублетов. Молекула устойчива, если валентная оболочка таких элементов, как С, N, О, Hal, содержит 8 электронов (правило октета), а валентная оболочка водорода-2 электрона. Хим. связь образуется обобществленной парой электронов разл. атомов (простая связь). Двойные и тройные связи образуются соотв. двумя и тремя такими парами. Электроотрицат. атомы (F, О, N) используют для связи с углеродом не все свои валентные электроны неиспользо-ванвые электроны образуют неподеленные (свободные) электронные пары. Полярность и поляризуемость ковалентных связей в орг. соед. в электронной теории Льюиса-Косселя объясняется смещением электронных пар от менее электроотрицательного к более электроотрицат. атому, что находит выражение в индуктивном эффекте и мезомериом эффекте. [c.398]

    Обменные силы, интенсивно действующие на коротких расстояниях как силы притяжения, которые обусловливают гомеополярнукх связь и для которых характерно появление общей связующей электронной пары. Эти обменные силы определяют расстояние между я рами атомов, валентный угол, собственные колебания, энергию диссоциации и пр. Они приводят к образованию гомеополярных соединений, схематически передаются октетной теорией Льюиса и поддаются математической обработке при помощи волновой механики. [c.15]

    Теория валентности Льюиса. Опубликованная Джольбертом Льюисом в январе 1916 г. теория валентности имеет с теорией Косселя, опубликованной в конце декабря 1915 г., общий принцип, а именно причиной образования химических соединений является особая стабильность электронных конфигураций, существующих в инертных газах. Однако Льюис в противоположность Косселю выдвигает в своих рассуждениях на первый план гомеополярные соединения. В соответствии с этим он принимает, что отличающиеся особой стабильностью электронные конфигурации возникают не только благодаря полному переходу электронов от одного атома к другому, но очень часто также благодаря тому, что атомы, участвующие в образовании химического соединения, 1шею/ г общие электроны. [c.154]

    Под теорией электронных смещений понимается совокупность представлений о том, что свойства химических связей и, следовательно, органических соединений обусловливаются характером смещения валентных электронов, образующих связь, от середины связи в сторону одного из атомов или даже перемещением их с данной связи на соседнюю. Истоком первых представлений в этой области послужило упомянутое выше объяснение Льюисом образования ковалентной полярной и, в пределе, гетерополярной связи. В качестве примера объяснения взаимного влияния атомов в органических соединениях приведем выдержку из статьи Льюиса 1916 г., где речь идет о сравнении хлоруксусной кислоты НгСЮСООН с уксусной НдССООН Притяжение электрона к хлору благоприятствует приближению пары электронов, соединяющей метильную и карбоксильную группы, Ii метильному углероду. Вследствие того, что эта [c.63]

    С нач. 20 в. осн. внимание в Н. х. уделяется составу и строению хим. соединений. А. Ле Шателье, Н. С. Курнаков, Г. Тамман, У. Робертс-Остен изучают сплавы металлов и металлиды. Н. С. Курнаков создает основы термич. анализа, А. Вернер, И. Тиле, Л. А. Чугаев и др. разрабатывают основы координац. химии. В- Коссель, Г. Льюис и др. создают электронную теорию валентности. Вводятся понятия об ионных и ковалентных связях, электроотрицательности, измеряются д и1пы связей и валентные углы для мн. простых молекул, нх энергии диссоциации, определяется и уточняется кристлл п1ч. структура в-в. Синтезируются новые классы соединений, напр, фториды благородных газов (Н. Бартлетт, 1962), кластеры, соединения внедрения графита. [c.373]

    Этот факт был осознан довольно давно. Например, вскоре после открытия электрона в 1897 г. Томсон пытался разработать электронную теорию валентности. Аналогичные попытки предпринимали другие ученые, в особенности Льюис, Ирвинг Ленгмюр и Коесель. Указанные теории имели один весьма серьезный дефект — электроны рассматривались как покоящиеся электрические заряды. Эта ситуация хорошо иллюстрируется геометрической моделью Ленгмюра, в которой каждое атомное ядро находится в центре воображаемого куба, а в вершинах последнего располагаются электроны. Предполагалось, что при химическом соединении двух атомов их кубы [c.15]

    Координационная теория Вернера с ее концепцией побочной валентности дает единое объяснение существования таких комплексов, как [Со(ЫНз)в]С1з. На основании этой теории, являющейся и в настоящее время фундаментом химии координационных соединений, можно объяснять свойства и стереохимию подобных соединений. Так как теория Вернера была предложена почти за двадцать лет до появления ныне существующих представлений об электронном строении атома, то эта теория не могла описать в современном аспекте природу побочной валентности или, как теперь ее называют, координационной связи. Для описания природы связи в комплексах в настоящее время получили широкое распространение три теории 1) метод валентных связей (МВС), 2) теория электростатического кристаллического поля (ТКП) и 3) теория молекулярных орбит (ТМО). Вначале следует упомянуть о вкладе, внесенном Льюисом иСиджвиком, в теорию химической связи. [c.31]

    Как раз перед первой мировой войной Льюис установил, что старые правила валентности могут быть выведены из электронной теории валентности. Существенными чертами этой теории была констатация необычно устойчивой электронной конфигурации инертных газов, пршщипы образования электронных пар и обобщения их двумя ядрами. Эти понятия были использованы в первых четырех главах при описании строения органических молекул. Для того чтобы понять поведение органических соединений, необходимо более глубокое описание, к которому мы теперь и переходим. [c.101]

    Вопрос о существованги полярных и неполярных соединений серьезно заинтересовал Льюиса в 1913 г. в связи с работой Брея и Бранча [26]. Авторы этой работы полагают, что надо различать полное валентное число, свойственное атомам, как правило, в органических соединениях, и полярное число, характеризующее атомы в неорганических соединениях. Полярное число в электронной теории валентности должно отвечать числу электронов, которые отдает или принимает данный атом. Сторонники электростатических электронных теорий применяли термин валентность в этом смысле, говоря и об органических соединениях. Брей и Бранч сомневаются в правильности такого подхода и указывают на то, что вопрос о приписывании той или иной полярной валентности (иными словами, способности принимать или отдавать электроны) определенному атому углерода остается открытым. В действительности кажется более разумным допустить возможность существования также неполярных связей, как это обычно делают химики-органики [там же, стр. 1442]. И в СН4 и в U, с этой точки зрения, полярная валентность углерода равна нулю, и ее, следовательно, можно в дальнейшем вообще не рассматривать. [c.84]

    В разд. 5.2 было отмечено, что под влиянием работ Вернера и ею современников, а также представлений Льюиса и Сиджвика об образовании химической связи за счет пары электронов возникла мысль о том, что лиганд представляет собой группу атомов, способную отдавать пару электронов иону металла или какому-либо другому акцептору, в результате чего образуется так называемая координационная связь. Эти представления о характере химической связи в комплексных соединениях в дальнейшем были развиты Полингом и сформулированы в виде теории валентных связей. Теория Полинга пользовалась широкой популярностью среди химиков в период 30—40-х годов. Однако в 50-е годы в дополнение к ней получила распространение теория поля лигандов. Эта теория была разработана физиками, главным образом Ван Флеком и его учениками, в период 30—40-х годов и вновь открыта химиками-теоретиками в начале 50-х годов. Теория поля лигандов в ее современном виде является развитием чисто электростатических представлений, впервые сформулированных в 1929 г. Г. Бете в виде так называемой теории кристаллического поля. [c.48]


Смотреть страницы где упоминается термин Валентные электроны в соединениях теория Льюис: [c.148]    [c.19]    [c.473]    [c.373]    [c.12]    [c.230]    [c.229]    [c.325]    [c.633]    [c.36]    [c.401]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.154 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность теория

Валентные электроны

Льюис

Теория Льюиса

Теория электронная

Теория электронов

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте