Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

электронное строение и конфигурация

    Рассмотрим теперь изменение энергий ионизации во втором периоде. Элементы этого периода имеют следующие величины /4 (эВ) 5,39(Ь1) 9,32(Ве) 8,30(В) ]1.26(С) 14,53(Н) 13,61(0) 17.42(Р) 21,5б(Не). Таким образом, при переходе от Ь к Не происходит возрастание энергии ионизации. Это объясняется увеличением заряда ядра (число электронных слоев при этом остается одним и тем же). Однако, как видно из приведенных данных, возрастание /1 происходит неравномерно у следующих за бериллием и азотом бора и кислорода наблюдается даже некоторое уменьшение / 4. Эта закономерность вытекает из особенностей электронного строения. У бериллия, имеющего конфигурацию 15 252, внешняя 5-оболочка заполнена, поэтому у следующего за ним бора, электрон поступает в / -оболочку /7-электрон менее прочно связан с ядром, чем 5-электрон, поэтому первая энергия ионизации у бора меньше, чем у бериллия. Строение внешнего электронного слоя атома азота в соответствии с правилом Хунда выражается схемой [c.76]


    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446]

    Покажем это на примере рассмотрения электронного строения комплексов железа. На рис. 3.23, а изображено распределение электронов в невозбужденном атоме железа. Подуровни 35 и Ър полностью заполнены парами электронов, в образовании связи они не принимают участия, на рис, 3.23,6 даны подуровни с электронами, принимающими участие в химических процессах, а на рис. 3.23, в это электронное строение представлено одной строкой 3 45 4р°4 . При образовании иона Ре + два электрона с 45-подуровня отрываются и образуется конфигурация (рис. 3.23, г). Ион Ре2+ взаимодействует с лигандами, причем от силы поля лигандов зависят электронное строение комплексообразователя и его магнитные свойства. [c.134]

    Представляет интерес рассмотрение вопроса о положении элементов в периодической системе с учетом их электронного строения. В качестве исходной посылки при этом полезно отметить, что s- и р-элементы образуют группы А в периодической системе, а -элементы входят в побочные подгруппы или группы В. При переходе от одной В-группы к другой свойства ( -элементов меняются не очень резко, что, как известно, связано с заполнением электронами второй снаружи оболочки. На основании этой закономерности в последние годы некоторые исследователи предлагают варианты размещения /-элементов в периодической системе с выделением их в специальные С-подгруппы на основании особенностей их электронного строения . В соответствии с этим сам лантан, имеющий 3 валентных электрона, должен возглавлять ШС-группу. Элементы от церия e(4/ 6s — 4 валентных электрона) до самария Sm ((4/ 6s — 8 валентных электронов, подобно железу 3d4s ) располагаются соответственно в IV — VlII -rpynnax. Европий Eu(4/ 6s"), имеющий устойчивую / -конфигурацию и, как следствие этого, лишь [c.24]


    Хром Ст значительно отличается от титана и ванадия по электронному строению и свойствам. Это объясняется тем, что предыдущие переходные элементы содержат заполненную внешнюю 3-оболочку, в то время как у атома хрома в основном состоянии всего один 48-электрон. Электронное строение хрома (конфигурация Зd 4s ) обусловлено устойчивостью наполовину заполненной [c.154]

    Электронное строение гомоядерных двухатомных молекул определяется путем мысленного процесса заполнения валентными электронами молекулярных орбиталей, начиная от а, и кончая а , в порядке возрастания энергии. Таким образом, можно установить, например, что молекула Ы2 имеет электронную конфигурацию КК(а ) (одна а-связь), а молекула N2 имеет конфигурацию КК (а,) (ст ) (Лд. у) (а,) с тремя эффективными связями (одна ст-связь и две л-связи). Эффективное число связывающих электронов, деленное на 2, дает условный порядок связи. Например, у молекулы Ы2 порядок связи 1, а N3 имеет порядок связи 3. По мере возрастания порядка связи в заданной гомоядерной двухатомной системе длина связи уменьщается, а энергия связи увеличивается. [c.544]

    Как известно, химические свойства атомов и ионов различных элементов обусловливаются их электронным строением (конфигурацией), размерами радиусов и зарядом ионов. [c.69]

    Выбор адсорбентов для избирательной адсорбции определяется двумя основными факторами химическим — природой поверхности и химическим строением скелета адсорбента и геометрическим — характером и размерами системы пор, пронизывающих адсорбент. Необходимо также знать электронное строение, конфигурацию и размеры молекул компонентов исследуемой смеси. [c.243]

    Рассмотрим электронное строение молекулы СО. Электронные конфигурации атомов С[Ь 2 э ] и 0[ 15 28 2/ ]. Ядра С и О имеют [c.82]

    Другая общая особенность электронного строения i- и р-элементов состоит в том. что после отделения электронов внешнего слоя остается ион, имеющий конфигурацию атома благородного газа li или ns np -, для р-злементов четвертого и следующих периодов образуется ион, имеющий 18-ти электронную оболочку У таких ионов не проявляются специфи- [c.316]

    Предлагаемый в данной работе подход относится к феноменологическим, т.к. система, поглощающая излучение, рассматривается как единое целое, а переходы электронов с одного уровня на другой во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [5]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек. Отсюда следует, что электронные спектры поглощения могут быть применены для определения физико-химических свойств. [c.84]

    Примесные ядра, находясь в чужой матрице, локально возбуждают ее, но и в самом примесном атоме происходят изменения электронной конфигурации вследствие взаимодействия примеси с атомами основной решетки. Это изменение, а именно изменение распределения электронов вокруг примеси, определяется потенциальными полями кристаллической решетки. Следовательно, величина изомерного сдвига на примесном ядре в разных матрицах должна характеризовать электронное строение матрицы. [c.203]

    Ярко выраженная поливалентность актиноидов отражает специфику электронного строения их атомов — близость энергетических состояний 5/-, 6d-, 7s- и 7р-подуровней, большую пространственную протяженность 5/-орбиталей по сравнению с 4/-и меньшую эф( )ективность экранирования внешних электронов. Только по мере заполнения 5/-орбиталей электронные конфигурации атомов несколько стабилизируются и элементы подсемейства берклия (Вк—Lr) проявляют более устойчивые низкие степени окисления +3 и +2. Для тория, протактиния и урана преобладают степени окисления -f4, -f5 и +6 соответственно, поэтому соединения этих элементов до некоторой степени напоминают соединения гафния, тантала и вольфрама. В настоящее время принадлежность их к семейству /-элементов (актиноидов) не вызывает сомнений. U, Np, Pu и Ат образуют группу уранидов, аналогично подгруппе церия в ряду лантаноидов, а элементы Ст—Lr образуют группу кюридов. [c.360]

    Рассмотрим электронное строение молекулы СО. Электронные конфигурации атомов С[1з 25 2р ] н О Ядра СиО имеют неодинаковые заряды (6 и 8). Эффектив- [c.130]

    Решение. Электронная конфигурация атом а кремния ls 2s 2p 3s-3p . Электронное строение его валентных орбиталей в невозбужденном состоя [ии может быть представлено следующей-графииеской схемо]  [c.55]

    Для непереходных элементов окислительные числа можно предсказать на основе электронного строения последних и стремления их к достижению устойчивой электронной конфигурации с 2, 8 и 18 электронами. Для непереходных элементов главных подгрупп периодической системы Д. И, Менделеева высшие окислительные числа равны номеру ее группы. Окислительные числа одного и того же элемента отличаются обычно на величину, кратную двум. Это связано с тем, что элементы главных подгрупп периодической системы теряют или обобщают электроны парами. [c.16]


    Для натрия характерно образование устойчивого иона Ыа , обладающего электронным строением предшествующего ему благородного газа неона. У иона же хлора строение внешней оболочки соответствует конфигурации благородного газа аргона. [c.72]

    Прежде всего обращает на себя внимание периодичность в изменении электронных конфигураций атомов элементов в зависимости от порядкового номера. Это указывает, что в основе систематики химических элементов лежит электронное строение атомов. Каждый период начинается элементом с новым значением п. В связи с этим номер периода совпадает с главным квантовым числом внешних электронов атома. Сам период можно характеризовать как совокупность элементов, начинающуюся с пз и завершающуюся гs rtp элементами, т, е. как совокупность их от щелочных металлов до благородных газов. Исключение составляет первый период, содержащий только водород и гелий. Число элементов в периодах соответственно равно 2, 8, 8, 18, 18, 32, Элементы подгрупп имеют сходные внешние электронные конфигурации, что обусловливает общность их химических свойств. К главной подгруппе относятся элементы, для атомов которых п [c.65]

    Отсюда следует, что физический смысл периодического закона Д. И. Менделеева состоит в периодичности повторения сходных электронных конфигураций при возрастании главного квантового числа и объединении элементов по близости их электронного строения. [c.66]

    Таким образом, электронное строение атомов всех элементов можно вывести из положения элементов в Периодической системе. В ряду элементов с последовательно возрастающим порядковым номером (числом электронов, зарядом ядра) аналогичные электронные конфигурации атомов периодически повторяются. Этот периодически повторяющийся характер изменения электронных конфигураций атомов объясняет периодическое изменение свойств элементов, т. е. Периодический закон Д. И. Менделеева. [c.39]

    На пространственную конфигурацию молекул влияют внешние атомные орбитали, имеющие неподеленную пару электронов. Рассмотрим конфигурацию молекулы ЫНз. Внешний уровень атома азота имеет строение [c.46]

    Конфигурация комплекса зависит от электронного строения иона металла и лиганда, от взаимодействий металл—лиганд и лиганд—лиганд и от геометрических свойств лигандов. [c.35]

    Разделение металлов на простые (зр) и переходные (с дефектными с1- и /-оболочками), обусловленное особенностями электронного строения атомов, проявляется и в существенном различии их металлохимических свойств. При этом под металлохимическими свойствами подразумевают не только ионизационные потенциалы и электроотрицательность, атомные радиусы и валентно-электронную конфигурацию изолированных атомов, но и особенности конденсированного состояния, определяющие характер взаимодействия компонентов (расслоение, эвтектика, ограниченный твердый раствор, непрерывный ряд твердых растворов, химические соединения). Несмотря на то что взаимодействие металлов друг с другом (и с неметаллами) осуществляется на атомном уровне, металлохимических свойств изолированных атомов недостаточно для полного описания специфики взаимодействия в конденси]юванном состоянии. Это связано с коллективизацией электронов гри образовании металлических кристаллов. Тем не менее металлохимические свойства элементов позволяют в первом приближении оценить возможность и характер взаимодействия в металлических системах. [c.370]

    Объяснить высокоэластич. свойства полифосфонит-рилхлорида позволяет также представление об изо-электронном строении (конфигурации) цепи этого полимера и типичного элементоорганич. каучука, напр. [c.182]

    Выяснение электронного строения атомов всех элементов периодической системы облегчается мысленным процессом последовательного заселения электронами водородоподобных орбиталей в порядке повышения их энергии и одновременного увеличения заряда ядра на единицу с каждым добавляемым электроном. При этом особое внимание следует обращать на связь между орбитальной электронной конфигурацией атомов и их первой энергией ионизации. Первой энергией ионизации (ЭИ атома называется энергия, необходимая для удаления из атома одного электрона, т. е. для осуществленР я процесса [c.391]

    Если в -оболочке могут быть только два электрона (с нротИ воположными спинами), то уже в р-оболочке их число может достигнуть шести. Поэтому возникает вопрос, каким образом ори- ентированы сп4]ны электронов. Так, для атома азота конфигурации )525 2р (2 электрона в первом слое, 5 — во втором) отвечают два возможных варианта электронного строения  [c.29]

    Олово 8п существует в виде двух аллотропных модификаций — неметаллическая форма а-8п (серое олово), устойчивая ниже 13,2 °С и металлическая форма Р-8п (белое олово), устойчивая выше 13,2 °С. Эти модификации отличаются структурой, что в свою очередь связано с электронным строением атома олова. Серое олово имеет алмазоподобную структуру и является изолятором, причем атомы олова находятся в состоянии зр -гибридизации (конфигурация 4с( 58 5р ). Белое олово имеет слоистую структуру и обладает металлической проводимостью, причем атомы олова находятся в состоянии sp -гибpидизaции (конфигурация 4с( 58 5р ). Такое различие в характере гибридизации и в типе структуры соответствует классическим валентностям IV в сером олове и II в белом. Действительно, если растворить серое олово в соляной кислоте и раствор выпарить, то образуется ВпСи-бНоО, если ту же операцию проделать с белым оловом, то в остатке получается 8пСЬ-2Н20, что экспериментально подтверждает приведенное выше объяснение. [c.140]

    Для идентификации многокомпонентных органических систем обычно используется сочетание нескольких методов, например, фракционирование методов ЯМР-, УФ-, ИК -спектроскопии и хроматографии, масспектрометрии [11,12] Существенным недостатком известных методик является трудоемкость, длительность и неоднозначность результатов анализа. До последнего времени применению методов электронной абсорбционной спектроскопии препятствовало отсутствие теории электронных спектров таких систем, главным образом из- за их сложности ( рис 4 1). Для исследования таких объектов требуются новые методы. Предлагаемый в данной работе подход относится к ( ю-номенологическим методам, т к. система, поглощающая излучение, рассматривается как единое целое, а максимумы спектров и электронные переходы во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучаегся как единое це юе, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [13]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек [14]. [c.64]

    Валентная электронная конфигурация всех элементов VA-группы— ns np , т. е. на внешнем энергетическом (валентном) уровне они содержат 2 спаренных s-электрона и 3 неспаренных (в соответствии с правилом Гунда) электрона на трехкратно вырожденном р-уровне. Однако между элементами этой группы существуют и различия в электронном строении. Так, у фосфора в отличие от азота впервые появляется вакантный внешний М-уровепь, что обусловливает возможность промотирования одного 35-электрона с образованием пятиковалентного состояния, которое, как известно, отсутствует у азота. У мышьяка, сурьмы и висмута к вакантному -уровню добавляется еще в отличие от фосфора полностью завершенный внутренний (п—1) -уровень, а у висмута, следующего за лентаноидами, кроме того, и 4/ -уровень. [c.282]

    При формировании качественных представлений об электронном строении атомов важная роль принадлежит приближению центральносимметричного потенциала, на основе которого атомную орбиталь записывают в виде произведений радиальной и сферической функций. Принцип Паули и приближение центрально-симметричного поля позволяют понять оболочечное строение атома и установить конфигурацию основного состояния. В тех случаях, когда можно ожидать несколько конкурирующих конфигураций, вопрос их выбора рещается либо экспериментально, либо численными расчетами в приближении Хартри — Фока. Лишь в исключительных случаях для установления терма основного состояния (см. гл. 3, 7) требуется построение более сложной, по сравнению с методом Хартри — Фока, волновой функции в форме наложения конфигураций. Эту логику рассуждений переносят и на теорию злектрон-ного строения молекул, однако здесь возникают новые вопросы. [c.187]

    Такие понятия, как конфигурация и терм, являются характеристиками электронного строения молекулы, они неприменимы в строгом смысле к описанию состояния отдельных атомов в составе молекулы. Тем не менее с использованием соображений симметрии удается для некоторых молекул установить примерное строение электронной оболочки атома в составе молекулы. Хорошо известным примером в этом отношении может служить молекула метана, в которой, как это впервые показал Л. Полинг, эффективная конфигурация атома углерода есть Этот вопрос обсуждается, как правило, в литературе весьма подробно, см. [17], [8], [12], [20]. Рассмотрим подобную задачу на примере более сложной системы — комплекса №Уг, где в качестве У может быть взят атом кислорода. Симметрия комплекса предполагается Сзу Атомы переходных элементов имеют малую энергию возбуждения. Для атома N1 (см. гл. 3, 6) разность полных энергий АЕ = Е Зс 4х) — ( F, 3 4х ) составляет всего лишь 205 см" = 0,03 зВ. При столь незначительной величине АЕ орбитальные энергии 4s и Зй -злект-ронов претерпевают тем не менее существенные изменения. Например, для основного в конфигурации с F-тepмa = -0,70693, 45 = = -0,27624, в то время как для терма -0,45730 и = -0,23576. [c.218]

    Подобная близость свойств объясняется тем, что в высшей степени окисления атом элемента, находящегося в третьем периоде (в главной подгруппе) и атомы элементов побочной подгруппы приобретают сходное электронное строение. Например, атом хрома имеет электронную конфигурацию 1з Когда хром находится в степени окисления 4-6 (например, в оксиде СгОз), шесть электронов его атома (пять М- и один 4б-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисления -Ьб (например, в триокси-де серы ЗОз), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных (1з 28 р ) также соответствует электронной структуре благородного газа. Короче говоря, сходство в свойствах соединений элементов побочной подгруппы и элемента третьего периода той же группы обусловлено тем, что их ионы, отвечающие высшим степеням окисления, являются электронными анапогами. Это легко видеть из данных табл. 21.1. [c.497]

    Из рис. 12 видно, что / в пределах одной группы, как правило, падает, а одного периода — возрастает. Вместе с тем эти изменения носят сложный характер, связанный со спецификой электронного строения атомов и указанных выше особенностей. Например, вторичные максимумы для щелочноземельных металлов обусловлены полным заселением и5-орбиталей (пз ), а для Ы, Р, Аз с повышенной устойчивостью — наполовину заполненной р-орбитали. Подобная картина наблюдается и для переходных элементов. Особенности в изменении / для элементов середины четвертогб периода по отношению к последующим, а также лантаноидных элементов по отношению к актиноидным обусловлены появлением у них электронов с новой симметрией орбиталей. Некоторые дополнительные особенности в изменении потенциалов ионизации пере- ходных элементов объясняются стабильностью электронных конфигураций. Так, повышенная устойчивость их для 2п, Сс1, Hg приводит к повышению /, а пониженная для Си, Ад, Аи — к снижению I. Орбитали с новой (впервые встречающиеся в атоме) симметрией относятся обычно к непроникающим (Ь-, 2р-, Зё-). [c.70]

    Элементы Б-групп (побочных подгрупп) Периодической системы ( / -элементы). Особенности электронного строения атомов, общая электронная конфигурация. Валентные электроны и степени окисления. Высшие степени окисления элементов ПБ-УПБ-групп, особенности у элементов 1Б- и У1ПБ-групп. [c.182]

    Проведенные ими термохимические исследования показывают, что энергия сольватации ионов мало зависит от природы растворителя и определяется в основном зарядом, радиусом и электронным строением сольватируемого иона. Молекулы воды и спирта взаимодействуют с ионами практически одинаково. При этом сольватирующие молекулы спирта обращены к иону металла атомом кислорода. Группы СНз спирта слабо взаимодействуют с ионами и не образуют водородных связей. Такая конфигурация сольватного комплекса не способствует формированию второго сольватного слоя, а также структур, где молекулы растворителя принадлежат одновременно двум ионам металла, как это наблюдается в структурах некоторых кристаллогидратов. С. И. Дракин, и М. X. Карапетьянц произвели оценку координационных чисел ионов с помощью модельных сольватов, образуемых [c.297]

    Тем не менее даже на этом этапе развнтия периодического закона оставался неясным физический смысл явления периодичности, т. е. констатировался сам факт периодического изменения свойств элементов, но не было понятно, почему при монотонном возрастании атомного номера свойства элементов меняются не монотонно, а периодически. И только на третье.м этапе, с развитием квантово-механической теории электронного строения атома, стало возможным вскрыть физический смысл периодического закона. Выяснилось, что сущность периодичности заключается в существовании предельной емкости электронных слоев и в периодическом возобновлении сходных валентных электронных конфигураций на все более высоком энергетическом уровне в результате наложения квантово-механического принципа Паули на классический принцип наименьшей энергии в атомной системе. [c.7]

    С развитием представлений об электронном строении атома стало ясным, что особая химическая инертность гелия, неона, аргона и их аналогов обусловлена повышенной устойчивостью полностью укомплектованных 5- и /3-оболочек. С учетом этого и были разработаны представления о ионной (Коссель, 1916) и ковалентной (Льюис, 1916) связи. Особая устойчивость электронного октета и стремление других атомов тем или иным способом приобрести электронную конфигурацию благородного газа на долгие годы стали краеугольным камнем теорий химической связи и кристаллохимического строения (правило Юм-Розери 8—Л, критерий Музера и Пирсона и др.). Нулевая группа стала своеобразной осью периодической системы, отражающей так называемое полновалентное правило (стабильность октетной конфигурации), подобно тому как УА-группа является осью, отражающей четырехэлектронное правило. [c.397]

    Не менее интересно рассмотреть переходную облас гь между /- и /-металлами. Лютеций и лоуренсий, завершающие ряд лантаноидов и актиноидов, имеют валентно-электронную конфигурацию (п—2)/ (п—1)с1 п5 . Предыдущие элементы иттербий у элемент 102 также имеют завершенную /-электронную оболочку (п — —2)/ я5 а электроны на п—1)с(-уровне отсутствуют. В соответствии с электронным строением отмеченные 4 элемента в основном состоянии, строго говоря, не могут быть отнесены к /-элементам, поскольку сформированный / -электронный слой обладает повышенной стабильностью и во взаимодействии может не участвовать. Действительно, для иттербия, например, весьма характерны производные со степенью окисления +2, а для лютеция и лоур( нсия, как и следовало ожидать, 4-3. В то же время иттербий в стегени окисления + 3 выступает как типичный /-элемент. Таким образом, на границе между /- и /-элементами наблюдается такая же двойственность в поведении, как и у элементов подгруппы мед и цинка при переходе от /- к 5р-металлам. [c.368]


Смотреть страницы где упоминается термин электронное строение и конфигурация: [c.408]    [c.62]    [c.235]    [c.102]    [c.140]    [c.389]    [c.377]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.274 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексные ионы электронное строение и конфигурация

Октаэдрическая конфигурация энергия и электронное строение

ПЕРИОДИЧЕСКИЙ ЗАКОН МЕНДЕЛЕЕВА. СТРОЕНИЕ АТОМА. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ АТОМОВ АТОМНОЕ ЯДРО

СТРОЕНИЕ АТОМА. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ АТОМОВ. АТОМНОЕ ЯДРО

Строение атома. Электронные конфигурации атомов. Атомное ядро. Периодический закон и периодическая система элементов Д.И.Менделеева

Строение электронной оболочки атома. Заполнение орбиталей электронами. Электронные конфигурации атомов элементов I—IV периодов

Электрон конфигурации

Электронная конфигурация

Электронная конфигурация комплексообразователя и строение комплексов

Электронное строение

комплексы, электронное строение и конфигурация

электронами электронное строение



© 2025 chem21.info Реклама на сайте