Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование связей переходный металл — водород

    III. ОБРАЗОВАНИЕ СВЯЗЕЙ ПЕРЕХОДНЫЙ МЕТАЛЛ—ВОДОРОД [c.210]

    Внедрение олефина с концевой двойной связью по связи переходный металл—водород может привести к образованию вторичного или нормального алкильного производного. В большинстве случаев образуется нормальный алкил, причем устойчивость алкильных производных металлов убывает в ряду метил > этил >  [c.274]


    Термодинамическое изучение реакции (1.1) [5] и сходного случая образования гидрида переходного металла, представленного реакцией (1.2) 8], показывает, что энергия связи металл — водород примерно равна 250 кДж/моль. [c.13]

    Вообще говоря, перечисленные выше условия часто выполняются в случае данных, полученных с помощью счетчиков для молекулярных кристаллов, содержащих закрепленные объемистые лиганды типа трифенилфосфина. Поскольку эти же лиганды часто используют для стабилизации гидридов переходных металлов, положение координированного водорода в действительности удалось определить во многих рентгеноструктурных исследованиях. Следует подчеркнуть, что очевидная точность этих определений составляет около 0,1 А, так что более тонкие детали взаимодействия металл—водород обнаружить не удается. Кроме того, необходимо отметить, что определяемые расстояния, вероятно, получаются систематически укороченными на 0,1—0,2 А, поскольку при расчетах пренебрегают эффектами связи. При обычном рентгеноструктурном определении длин связей С—И в углеводородах, в которых атомы водорода вносят значительный вклад в рассеяние, получают типичные значения длины связи порядка 0,9 А, что примерно на 0,2 А меньше величины, определенной спектроскопическими методами. Как правило, этот факт объясняют эффектами образования связи. Рассеяние рентгеновских лучей происходит главным образом на электронах атомов. Если в результате образования связи 15-электрон водорода сдвигается в сторону того атома, с которым связан водород, то происходит также и смещение центра рассеяния атома водорода. [c.41]

    Группа переходный металл — водород часто присоединяется по двойной связи олефинов с образованием комплексов типа М—Рл реакция обратима (разд. К, б). [c.266]

    Однако эта модель не всегда дает хорошее согласие с экспериментальными данными. Например, установлено, что теплота гидратации иона серебра Ag+ существенно больше, чем ионов натрия нли калия, хотя величина кристаллографического радиуса иона серебра лежит меладу соответствующими величинами для этих ионов щелочных металлов. Существуют и другие факты, указывающие на то, что гидратация ионов тажельк металлов связана с процессами комплексообразования с ковалентным характером связи. В качестве прикюра можно отметить изменение окраски прп растворении некоторых соединений переходных металлов, например, Сг(П1) или №(П), и низкую скорость процесса их растворения в воде. Ковалентное взаимодействие возможно только с катионами, поскольку только кислородный атом молекулы воды может участвовать в образовании ковалентных связей (коваг лентно связанный атом водорода не может образовать вторую ковалентную связь). [c.129]


    Предполагают, что в реакции, катализируемой соединениями никеля, возможно образование в качестве промежуточного соединения какого-то гидрида никеля [42]. Это предположение следует из рассмотрения спектра ЯМР, характерного для соединений со связью переходный металл—гидридный водород. [c.102]

    К особенностям химического поведения водорода следует отнести способность к образованию гидридов различных типов, в которых возможно образование как протонных (например, (НР)х), так и гидридных водородных мостиковых связей в электронодефицитных соединениях (ВгНе). В некоторых комплексах переходных металлов атом водорода непосредственно связан с атомом металла. [c.460]

    Свободные радикалы легко образуются в процессах с участием соединений переходных металлов, которые, как правило, уже имеют неспаренные электроны. Например, распад перекиси водорода по связи 0—0 с образованием двух свободных радикалов требует затраты энергии 208 кДж/моль. В присутствии ионов Ре- этот процесс может сопрово.ждаться одновременной передачей од- [c.22]

    Катализируемую переходными металлами реакцию монооксида углерода и водорода с алкеном с образованием альдегида [схема (6.135)] называют реакцией гидроформилирования, поскольку результатом ее является присоединение атома водорода и формильной группы к двойной связи. [c.236]

    Хотя эта точка зрения и является, по-видимому, общепризнанной, пока неясно, как эти два фрагмента — аллильная группа и атом водорода связаны с поверхностью. Большинство исследователей, по-видимому, предполагают, что аллильная группа связывается с ионом переходного металла за счет образования я-комп-лекса, в то время как атом водорода обычно связан с кислородным ионом. [c.88]

    В этой главе систематически описано образование и превращение связей переходный металл—водород в молекулярных комплексах, а также обсуждены характерные примеры различных типов реакций. В данной работе атом водорода, связанный с металлом, рассматривают как гидрид-анион. Далее в тексте используются следующие сокращения 1,2-быс-(дифенилфосфино)этан — DPPE  [c.205]

    Целый ряд растворимых систем, подобных каталитическим системам Циглера, катализирует гидрирование олефинов при комнатной температуре и умеренном давлении водорода [114]. Используемая система состоит из ацетилацетоната или алкоголята металла, например Ti(0Pr )4, У0(0Е1)з, Сг(асас)з, Ре(асас)з или Со(асас)з, и избытка алкилалюминия, такого, как AlBu. При этом гидрируется большинство алкенов скорость гидрирования тем выше, чем ниже степень замещения по двойной связи. Предполагаемый механизм включает образование гидридов переходных металлов в качестве промежуточных соединений, реакцию внедрения олефинов и гидрогенолиз полученных алкилпроизводных. Приблизительный порядок эффективности таков Со(1П) >- Fe(III) >- Сг(П1). Получение moho-, ди- и тридейтериро-ванных продуктов из дейтерированного 2-метилбутена-2 указывает на другой сложный механизм. Это объясняется легкой обратимостью следующей реакции  [c.126]

    В гл. 6 детально обсуждается механизм внутримолекулярных перегруппировок, приводящих к образованию или разрыву связи между двумя лигандами у одного металла. Исторически такие превращения получили название реакций внедрения или, более точно, миграционного внедрения . Наиболее известной реакцией такого типа является миграция водорода по уравнению (1.2), которая играет важную роль во многих превращениях, начиная от разрыва связи переходного металла с алкильной группой и кончая каталитическим гидрированием олефинов. [c.13]

    В этом комплексе частицы Н и Н+, располагаясь симметрично относительно оси связи между молекуло воды и металлом (Н2О—М), образуют молекулярный ион Н2+, связанный одновременно с поверхностью металла и с молекулой воды. Связь с металлом обеспечивается за счет валентного электрона, связь с молекулой воды — за счет результативного положительного заряда иона. Переходный комплекс может появиться и без предварительного акта разряда и образования адсорбированного атома водорода. Для этого необходимо, чтобы один из двух ближайших адсорбированных понов водорода приобрел электрон. Электрохимическая десорбция, по Гориучи, таким образом, не обязательно должна проходить через разряд гидроксониевого иона на поверхности металла, уже частично покрытой атомами водорода. [c.407]

    Измерение поверхностного дипольного момента р, позволяет судить о доле ионной составляющей межатомных связей, возникающих в процессе хемосорбции. В некоторых случаях, как, например, при сорбции на вольфраме паров натрия, калия и цезпя ди-польиые моменты достигают заметной величины, что указывает на высокую степень ионности связей. Для сравнения укажем, что дипольный момент монослоя тория на вольфраме имеет в 4—5 раз меньшее значение, чем дипольные моменты монослоев щелочных металлов. В данном случае связь преимущественно ковалентная. Поверхностные межатомные связи, образующиеся при сорбции на металлах и угле водорода, окиси углерода, азота, углеводородов, галогенидов отличаются высокой долей ковалентности. Были пблу-чены многочисленные доказательства того, что сорбция вышеуказанных газов на переходных металлах и близких им металлах группы 1В Периодической системы Д. И- Менделеева происходит благодаря образованию ковалентных связей с использованием не полностью занятых -орбиталей этих металлов (табл. 5). [c.197]


    Молекулярный водород не очень реакционноспособен. С галогенами водород реагирует после инициирования по радикально-цепному механизму. Обычно при нагревании молекула Нг гомолнтически расщепляется. Образующийся атомарный водород восстанавливает, к примеру, многие оксиды до низщих оксидов или до металлов (разд. 36.2.1). В присутствии платинового, никелевого или палладиевого катализаторов водород вступает в реакции уже при комнатной температуре. Каталитическое действие оказывают также соединения некоторых тяжелых металлов или их ионы. Например, ионы Ag+ и Мп04 восстанавливаются молекулярным водородом. Реакции водорода при низких температурах протекают вследствие образования реакционноспособной связи с металлом-катализатором (переходным металлом). При этом происходит поляризация молекулы водорода. [c.464]

    Гидроформилирование [435] олефинов проводят действием моноксида углерода и водорода в присутствии катализатора, обычно карбонила кобальта, но это может быть и родиевый комплекс 436], например гидридокарбонилтрнс (трифенилфосфин) родий, или другое соединение переходного металла.В промышленности эта реакция называется оксо-синтезом, но ее можно провести и в лабораторных условиях в обычном аппарате для гидрирования. Субстраты по реакционной способности можно расположить в следующем порядке терминальные олефины с нормальной цепью>внутренние олефины с нормальной цепью> олефины с разветвленной цепью. Из сопряженных диенов получаются диальдегиды при катализе соединениями родия [437], но в присутствии карбонила кобальта образуются насыщенные моноальдегиды (вторая двойная связь восстанавливается). В молекуле субстрата могут присутствовать различные функциональные группы, например ОН, СНО, OOR, N, однако галогены, как правило, мешают реакции. Гидроформилирование тройных связей происходит очень медленно, и известно лишь небольшое число примеров таких реакций [438]. Побочно протекают альдольная конденсация (реакция 16-40), образование ацеталя, реакция Тищенко (т. 4, реакция 19-71) и полимеризация. Сообщалось о стереоселектпвном син-присоединении (см., например, [439]). С помощью хиральных катализаторов проведено асимметрическое гидроформилирование [440]. [c.211]

    Большая группа элементов (многие переходные металлы) образует гидриды с преимущественно металлическим характером связи. Все они являются фазами внедрения. Состав большинства металлоподобных гидридов отвечает формулам ЭН, ЭН2. Иногда встречаются и гидриды состава ЭН3. Соотношение элементов в формульных единицах не зависит от природы металла, правило формальной валентности здесь не соблюдается, а состав определяется общими закономерностями образования фаз внедрения. Водород способен внедряться не только в октаэдрические пустоты плотноупакованных структур, что отвечает составу АВ, но и в тетраэдрические (состав АВ2). Если же атомы водорода занимают и октаэдрические, и тетраэдрические пустоты, реализуется состав АВд. Поскольку в реальных условиях водород может занимать лишь часть пустот соответствующего типа, указанные составы являются предельными и возможно отклонение от них в сторону недостатка водорода. Поэтому все металлоподобные гидриды являются односторонними фазами переменного состава ЭН1-2 , ЭН2-1, ЭНз- . Переходные металлы 4-го периода с кайносимметричной 3rf-оболочкой, во-первых, растворяют водород, а во-вторых, образуют фазы внедрения. При этом первая четверка 3d-металлов (Ti — Мп, взаимодействие скандия с водородом не изучено) хорошо растворяет водород в твердом состоянии, но образуют лишь по одному гидриду. Металлы УП1В-группы (Fe, Со, Ni), напротив, плохо растворяют водород, но образуют по нескольку гидридов. Взаимодействие с водородом первых пяти элементов 5-го и б-го периодов подчиняется тем же закономерностям — образование ограниченных твердых растворов и гидридов. Исключением является молиб- [c.269]

    ГИДРИДЫ, соединения водорода с металлами или менее электроотрицат., чем водород, неметаллами (иногда к Г. относят соед. всех хим. элементов с водородом). Г. щелочных и щел.-зем. металлов — солеобразные соед., молекулы к-рых содержат атомы водорода в степени окисл. —1 при нагрев, выделяют Нг не раств. в орг. р-рителях, энергично разлаг. водой с образованием щелочей и Нг в отсутствии влаги стойки. Г. переходных металлов имеют характер связи, близкий к металлической, миогие относятся к нестехиомет-рич. соед., твердые хрупкие в-ва серого или черного цвета. Гидриды Ве, Mg, А1 и подгрупп Си, 7п, Са — полимерные соед., термически малоустойчивы. Г. металлов — восстановители, источники Нг. Получ. взаимод. металлов с Нз полимерные Г.— р-цией галогенидов металлов с Г. или алюмогидридами щел. металлов. [c.131]

    Ацетилацетон (пентандион-2,4, Насас) и аналогичные р-дике-тоны легко образуют енолят-анионы и стабильные производные металлов (соли), содержащие шестичленные хелатные кольца в которых атомы кислорода координационно связаны с металлом. Многие мономерные р-дикетонаты металлов обладают свойствами типичных органических соединений. Их растворимость в обычных растворителях используют для извлечения ионов металлов из водных растворов. Парамагнитный ацетилацетонат хрома применяют в качестве релаксационного реагента, а р-дикетонатьГ лантанидов — в качестве сдвигающих, реагентов в спектроскопии ЯМР и при получении металлорганических соединений. Ацетилацетонаты некоторых переходных металлов обладают каталитическими свойствами. Так [У0(асас)2] катализирует образование эпоксидов из алкенов и пероксида водорода, а [Ы1(асас)2] способствует изомеризации алкенов. Опубликовано несколько обзоров, в которых описаны способы получения ацетилацетонатов металлов [20]. Большинство известных производных переходных металлов можно получить прибавлением карбоната натрия к раствору ацетилацетона и соли металла. [c.365]

    Комплексы переходных металлов, как и следовало ожидать, катализируют изомеризацию циклопропанов н родственных соединений [358—361]. В некоторых случаях скелетные перегруппировки этого типа сопровождаются переносом атохмов водорода. Так, обработка бицикло[2.1.0]пентана, например, [НЬС1(СО)2]2 приводит к циклопентепу. Первой стадией этого процесса, по-видимому, является окислительное присоединен ие по центральной углерод-углеродной связи с последующей изомеризацией в гидрид л-аллилродия и затем в л-енильный комплекс родия, распадающийся с образованием циклопентена (схема 312) [106]. [c.334]

    Незамешенный пиррол реагирует со свободными радикалами с образованием смол, что связано, вероятно, с первоначальным отшеплением водорода. Однако для некоторых М-замешенных производных пиррола характерны препаративные реакции радикального арилирования, позволяющие получать продукты замещения по а-положению [86]. Более эффективный подход к синтезу арил-пирролов основан на использовании реакций сочетания, катализируемых переходными металлами (разд. 2.7.2.2). Реакция Н-метилпиррола с электрофильным бензилокси-радикалом приводит к продуктам замещения по а-положениям [87]. [c.325]

    Для реакций миграции двойной связи в алкенах (т. е. миграции атомов водорода) под действием гомогенных катализаторов на основе переходных металлов было установлено два основных механизма. Первый из них заключается в присоединении алкена к гидриду металла с образованием металлалкильного производного [8] с последующим -элиминированием, приводящим к изомерному алкену [схема (5.7) дополнительные лиганды для простоты опущены]. Типичными примерами реакций изомеризации, протекающих по этому механизму, являются реакции, катализируемые соединениями родия. [c.175]

    Реакции монооксида углерода с алкенами и водой (гидрокар-боксилирование) [схема (6.25)] катализируются многими комплексами переходных металлов, в том числе Со2(СО)в, N1(00)4 и Н2Р1С1б/5пС12. Однако во всех случаях предполагают, что действующей каталитической единицей является гидрид переходного металла, и реакция протекает путем внедрения алкена по связи металл—водород, за которым следует внедрение монооксида углерода в образовавшуюся связь металл — углерод и, наконец, расщепление ацильного комплекса водой с образованием карбоновой кислоты и гидрида металла [схема (6.26)]. [c.199]

    Этим объясняется широкое развитие И. среди переходных металлов по группам, горизонтальным и диагональным рядам пераодаческой системы элементов. В связи с этим при легировании сталей и чугунов главнейшими металлами являются титан, ванадий, хром, марганец, никель, молибден и вольфрам. В первом приближении период решетки твердых растворов аддитивно связан с периодами решеток компонентов. При несовершенном И. с понижением т-ры может происходить распад твердых растворов с образованием двух- или многофазных систем. Подобное яв-.тоние используют для старения металлов, т. е. получения после закалка дисперсноупрочненных сплавов (см. Дасперсноупрочненные материалы), характеризующихся повышенной твердостью, изменением магн. и электр. св-в. В твердых растворах второго рода атомы компонентов отличаются электронным строением и геометрическими характеристиками. В междоузлия металла внедряются атомы неметалла, не изменяя структуры исходного металла (сплава), что предполагает низкую концентрацию внедренных атомов. Твердые растворы внедрения образуют водород, углерод и азот. Содержание углерода в твердом растворе альфа-железа (см. Железо) — 0,025 ат.%, в гамма-железе — 2,03, в твердом растворе ниобия — 0,02 ат.%. Увеличение концентрации усиливает хим. взаимодействие атомов металла и неметалла, изменяет электронную и кристаллическую структуру, вызывает образование внедрения фазы,. Расчет радиусов междоузлий для гексагональных плотноупакованных, гранецентрированных кубических и объемноцентрированных кубических структур позволил сделать вывод о возможности внедрения атомов при гх/гщ < 0,59, где — радиус атома неметалла — радиус ато- [c.487]

    Следует выяснить, насколько эта схема подтверждается экспериментальными данными. То обстоятельство, что некоторые металлы, как, например, Pt, Pd и Ni, хорошо известные в качестве активных катализаторов, обладают частично незаполненной d-зоной [55], привлекло за последнее время внимание к переходным металлам. В результате ряда работ, посвященных исследованию каталитической активности сплавов переходных металлов (эти работы будут подробно рассмотрены ниже), была подтверждена та точка зрения, что образование ковалентных связей с хемосорбированными частицами облегчается, если в металлической фазе содержатся дырки в -зоне. Условие высокой плотности энергетических состояний у поверхности Ферми в этих случаях всегда выполняется, так как плотность уровней в d-зоне значительно выше, чем в s-зоне. Эти положения можно увязать с теорией валентных связей Полинга [56], в которой представление о дырках в d-зоне переходных металлов заменяется по существу представлением о свободных атомных d-орбитах. Полинг показал с помощью своей теории, что пространственное расположение атомов переходных металлов тесно связано с их -характером и не исключено, что в некоторых случаях кажущееся существование геометрического фактора может быть обусловлено главным образом электронной структурой металлов. Будар отметил, что этим, вероятно, объясняется найденная Биком на ряде пленок переходных металлов связь между строением их пространственной решетки и их активностью в отношении реакции гидрирования этилена [57]. Гипотеза о том, что более высокое значение -характера благоприятствует ковалентной хемосорбции, возникла также на основании изучения адсорбции [18]. Бик успешно интерпретировал с этой точки зрения свои последние данные по хемосорбции водорода [57]. Эти представления были полностью подтверждены исследованиями Трепнела [58], который изучил активность пленок почти двадцати различных металлов в отношении хемосорбции ряда газов. Установить какую-либо корреляцию с работой выхода, по-видимому, не удается, и это может свидетельствовать о том, что высокая плотность уровней у поверхности Ферми является более важным фактором, чем большая работа выхода. Несомненно, что предварительное отравление медной пленки малыми количествами кислорода (благодаря чему увеличивается работа выхода), не способствует хемосорбции водорода [59]. [c.497]

    В работе [32] проведено сравнительное исследование каталитической активности металлического хрома,а также карбидов СгдС2 и Сг,Сд при ароматизации к-гексана ик-октана. Было обнаружено отсутствие каталитической активности у хрома и ароматизирующая способность у обоих карбидов хрома, причем Сг Сз оказался более активным. Отсутствие каталитической активности у хрома может быть связано с тем обстоятельством,что,несмотря на наличие у хрома формально средней по величине акцепторной способности, при окружении его соседними атомами в кристаллической решетке металла осуществляется образование стабильной конфигурации Принятие я-электронов,например водорода в реакциях дегидрогенизации,при этом сильно затруднено или вообще невозможно, что и показано на опыте [33] значительно легче может происходить отдача х-электронов и появляться каталитическая активность в соответствующих реакциях. При образовании карбидов хрома эта стабильная конфигурация нарушается и происходит донорно-акценторное взаимодействие между атомами хрома и углерода, которое сводится к передаче внешних (главным образом 4 ) электронов хрома на коллективизацию с р-электронами углерода. При этом в связи с относительно небольшой величиной для хрома и высоким ионизационным потенциалом атомов углерода вероятен не только переход х-электро-нов хрома в направлении остова атома углерода, но и частичное нарушение 3( -конфигурации с соответственным повышением акцепторной способности хрома. С повышением относительного содержания углерода в карбидных фазах хрома увеличивается вероятность образования связей между атомами углерода (что следует также из усложнения структурных мотивов атомов углерода при увеличении отношения С/Сг), которые стремятся в пределе к образованию устойчивой конфигурации типа характерной для алмаза (что эквивалентно резкому повышению ионизационного потенциала атомов углерода), и в конечном счете ко все большей возможности нарушения 3 -конфигурации атомов хрома. Это вызывает резкий рост каталитической активности при переходе от хрома к его карбидам, в которых атомы углерода образуют цепи. В случае окиси хрома, вследствие высокого ионизационного потенциала кислорода, коллективированные электроны хрома и кислорода резко смещены в направлении атомов кислорода, что содействует нарушению устойчивой конфигурации -электронов хрома, повышает акцепторную способность его остова и вызывает высокую каталитическую способность окиси хрома, например в реакциях типа дегидроциклизации парафиновых углеводородов. Исходя из этого окислы вообще должны обладать относительно высокими каталитическими свойствами, особенно низшие окислы переходных металлов, так как высшие окислы, как правило, являются полупроводниками с большой шириной запрещенной зоны, затрудняющеь электронные переходы. Последнее относится и к некоторым другим тугоплавким фазам в областях их гомогенности, когда при уменьшении содержания неметалла в пределах этих областей появляются энергетические разрывы, как это происходит, например, для нитридов титана и циркония [33—35]. [c.243]

    Переходя к рассмотрению некоторых черт механизма окисления водорода на переходных металлах, следует прежде всего отметить, что наличие корреляции между скоростью окисления водорода и позволяет, как и в случае окислов, постулировать разрыв связи Ме—О в лимитирующей стадии реакции. Однако, в случае металлов, судя по зависимости активности и от энергии связи Ме—Н, в лимитирующей стадии реакции происходит также разрыв связи Ме—Н. Следовательно, состав активированных комплексов лимитирующей стадии процесса окисления водорода на окислах и на переходных металлах различен, эти вещества в рассматриваемой реакции неоднотипны [42, 211]. Это подтверждается тем, что зависимости скоростей окисления на металлах и окислах различаются (рис. 40). Приведенные на этом рисунке данные об активности металлов относятся к кинетической области протекания реакции окисления водорода. Необходимо подчеркнуть также, что характерной чертой этого процесса на металлах является возможность его осуществления по гетерогенно-гомогенному механизму. В то же время, даже на одном из наиболее активных катализаторов окисления водорода — платине — эта реакция, во всяком случае в отсутствие свободных объемов, при температурах ниже 100° С протекает чисто гетерогенно. Это подтверждается практическим постоянством величин удельной каталитической активности платиновых катализаторов, удельные поверхности которых различаются примерно на 4 порядка [261]. В этих условиях реакция окисления водорода на платине осуществляется, по-видимому, по стадийному механизму через взаимодействие кислорода с поверхностью с образованием ОН-групп и их последующую реакцию с водородом, приводящую к выделению воды. Во всяком случае, протекание окисления водорода по такому механизму однозначно показано на пленках серебра при комнатной температуре [44, 217, 262—264]. [c.246]

    Вопрос о природе хемосорбционной связи первоначально решался также на основе данных о теплотах адсорбции. Так, например, преДйоложенне об образовании чисто ионной связи Н+—Ме" (если Ме — переходный металл) было подвергнуто сомнению, потому что Эммет и Теллер [34], а затем Купер и Эли [35], рассчитав теплоты ионизационной хемосорбции, показали сильную эндотермичность этого процесса, тогда как в действительности имеет место экзотермический процесс. Эли [36] рассчитал теплоты хемосорбции водорода теоретически, предположив ковалентный характер связи Ме—Н при малых заполнениях  [c.269]

    В последнее время вновь приобрел большую актуальность вопрос о возможности прямого участия кислородных ионов решетки 0 в окислительном катализе на окислах. Это имеет значение также и для переходных металлов, так как в условиях окислительного катализа они обычно покрыты тонкими оксидными пленками. Прямое участие кислорода катализатора в окислительном катализе принималось во многих старых работах, рассматривавших такой катализ как попеременное восстановление и новое окисление катализатора. Долгое время такое представление оставалось преобладающим в каталитической литературе. За этим последовал период преобладания адсорбционных представлений, согласно которым окисление осуществляется адсорбированным кислородом, и прежняя точка зрения сохранилась в немногих случаях, в частности для окислительного катализа на окислах ванадия. Применительно к окислению окиси углерода в СО на МпОа вопрос об относительном участии решеточного и адсорбированного кислорода исследовался Ройтером [8] с использованием катализирующего окисла MnOj, меченного 0 . Эти авторы пришли к выводу об отсутствии заметного содержания кислорода катализатора в СОз и о неприменимости схем с чередующимся восстановлением и окислением катализатора. Убедительность этого вывода оспаривалась другими авторами [9]. Гипотеза о прямом участии кислорода катализатора в окислении в последнее время вновь прирбрела много сторонников в связи с результатами более детального раздельного изучения взаимодействия окисных катализаторов с окисляемыми веществами и кислородом и с более детальным исследованием скоростей поэтапно проводимого окисления. Особенно большую роль при этом сыграло изучение кинетики и механизма окислительного дегидрирования олефинов на смешанных оксидных висмут-молибденовых катализаторах, промотированных железо-хромовых и других. Одним из первых Захтлер [6] выдвинул точку зрения о том, что началом окислительного процесса является восстановление 0 -ионов поверхности окислов водородом из молекул углеводорода в ОН-группы с последующим отщеплением одной молекулы воды из этих двух ионов и образованием в конечном виде одной кислородной вакансии, способной вновь превращаться в 0 или реагировать с кислородом из газовой фазы (см. также [10]). Серьезным доводом в пользу этого является способность соответствующих активных оксидных систем осуществлять полностью процессы окислительного дегидрирования без введения газообразного кислорода, за счет кислорода твердой фазы. Подобный факт наблюдался и изучался рядом авторов и послужил одной из отправных точек в развитии современной теории окислительного дегидрирования. Особенно хороша это явление наблюдается при изучении взаимодействия олефина с окисны- [c.273]


Смотреть страницы где упоминается термин Образование связей переходный металл — водород: [c.24]    [c.208]    [c.128]    [c.235]    [c.65]    [c.108]    [c.643]    [c.301]    [c.643]    [c.20]    [c.160]    [c.135]    [c.525]    [c.180]    [c.119]    [c.276]    [c.362]   
Смотреть главы в:

Гидриды переходных металлов -> Образование связей переходный металл — водород




ПОИСК





Смотрите так же термины и статьи:

Металлы водородом

Металлы переходные

Образование металлов

Связи в металлах



© 2025 chem21.info Реклама на сайте