Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели структур полимеров

    Справедливость результатов, следующих из простых модельных соображений, показывает, что полиэтилентерефталат испытывает деформацию как непрерывный континуум. Это является весьма серьезным доводом в пользу бахромчато-мицеллярной модели структуры полимера, причем обсуждавшиеся результаты показывают, что кристаллические области просто вращаются в матрице в процессе деформации полимера и не испытывают каких-либо специфических превращений в отличие, например, от деформации полиэтилена [67]. [c.303]


    Здесь следует отметить, что эти представления удовлетворительно описывали многие особенности физико-механического поведения полимерных тел, что заставляло думать о справедливости предложенных моделей структуры полимеров в аморфном (модель молекулярного войлока ) и в кристаллическом (модель бахромчатых мицелл ) состояниях. [c.6]

    Для объяснения указанных особенностей кристаллического состояния полимеров были предложены различные модели структуры полимеров, к анализу которых мы и перейдем. [c.42]

Рис. 25. Механическая модель структуры полимера с учетом Рк (по Ребиндеру). Рис. 25. <a href="/info/594167">Механическая модель структуры</a> полимера с учетом Рк (по Ребиндеру).
    Привести краткое описание моделей структуры концентрированных растворов и расплавов полимеров  [c.205]

    Приведенные выше механические модели называются линейными, поскольку они описывают только начальный прямолинейный участок кривой растяжения. Упругость эластомера в этой линейной области называют линейной вязкоупругостью. Надмолекулярная структура полимера в этой области меняется незначительно (малые деформации) и ее практически можно считать неизменной. [c.126]

Рис. 2.11. Модели структуры вытянутых частично кристаллических полимеров. Рис. 2.11. <a href="/info/33591">Модели структуры</a> вытянутых <a href="/info/117716">частично кристаллических</a> полимеров.
    Как отмечалось в гл. I, в большом мас-. штабе времени структура полимеров хорошо описывается моделью хаотически переплетенных цепей. Молекулярная сетка, обусловленная переплетениями макромолекул, отчетливо проявляется в опытах по вытяжке полимеров, например полиметилметакрилата, причем плотность сетки повышается с понижением температуры. В процессе течения в узлах происходит проскальзывание цепей, разрушение узлов и образование новых. [c.181]

    Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрилата при температуре ниже Го- Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов. [c.27]


    Многие исследователи считают, что структура полимера в растворе и блоке близка к модели хаотически переплетенных цепей и только при кристаллизации образуются упорядоченные области в виде кристаллитов. Этим объясняется, что структура полимеров в кристаллическом состоянии изучена лучше. Кроме того, прямые структурные методы (рентгенографические, электронно-графические и др.) дают наилучшие результаты при исследовании области когерентного рассеяния, т. е. для кристаллических структур с дальним порядком в расположении атомов, атомных групп и цепей. [c.34]

    Таким образом, изотактические полимеры олефинов имеют регулярное строение в пространстве, а боковые группы в них спиралеобразно расположены вокруг основной цепи, так что одинаковое положение повторяется через каждые два элементарных звена. На рис. 31 показана модель структуры изотактического полипропилена. [c.454]

    Как показано в [2-49], хорошо ориентированная ламелярная микроструктура (рис. 2-35) с высокой степенью упорадочения кристаллитов при нагревании до 2100 С получается при двухстадийной фильтрации расплавленного каменноугольного пека при 350°С. В первой стадии выделяется г фракция, растворимая в хинолине и нерастворимая в толуоле, а во второй, при прохождении остатка через пористый сепаратор, образуется высокоориентированная структура мезофазы по схеме на рис. 2-37. Из нее при коксовании получается кокс с ламелярной микроструктурой и с резко пониженным содержанием микропор. В [2-50] приведены результаты рентгеноструктурного исследования карбонизации одного из компонентов каменноугольного пека — антрацена. Показано, что образующаяся из антрацена ме зофаза состоит из конденсированных димеров и тримеров, сохраняющихся до образования других ароматических структур выше 450°С. Предполагаемые модели структуры полимера, образующегося при пиролизе антрацена на стадии формирования мезофазы, показаны на рис. 2-23. [c.77]

    Сам по себе природный объект, например полисахарид или смешанный углеводсодержащий биополимер, часто бывает столь сложным, что непосредственно понять его свойства и функцию на молекулярном уровне современной науке оказывается не под силу. И тут неоценимую помощь оказывают упрощенные модели такого полимера, включающие определенные элементы его структуры. Такую роль, например, играют олигосахариды по отношению к полисахариду или полисахаридные цепи гликопротеина по отношению к природному гликопротеину. Источником подобных упрощенных систем может служить, с одной стороны, сад[ исходный биополимер, а с другой — их химический синтез. [c.116]

    Келлер [64] объясняет вытяжку на основе новой модели структуры неориентированного полимера, исходя из представлений о роли сферолитов в явлении вытяжки. Как уже указывалось, Келлер рассматривает кристаллический неориентированный полимер как систему сферолитных образований, состоящих из плоских спиралевидно закрученных полосок. При растяжении полоски извлекаются из сферолитов и ориентируются в направлении приложенного усилия. Это представление о расположении ориентированных звеньев дает возможность объяснить ряд явлений, наблюдаемых при вытяжке полиамидных волокон, в частности плоскостную и селективную ориентацию [94, 95]. [c.81]

    Уравнения (5.26)-i-(5.30) представляют собой основную часть общей модели, которая может быть использована для решения задач проектирования реактора и определения рассмотренных выше технологических параметров при критериях оптимальности, не учитывающих параметры состава и молекулярной структуры полимера. [c.96]

    Математическая модель процесса получения полиэтилена с учетом параметров молекулярной структуры полимера  [c.98]

    По модели (5.26) —(5.37) были рассчитаны параметры ММР и структуры полимера при варьировании основных входных переменных реакционного давления, концентраций инициатора (кислорода) и модификатора (пропана). [c.100]

Рис. 1.16. Модель структуры аморфного полимера Рис. 1.16. <a href="/info/33591">Модель структуры</a> аморфного полимера
    Для обнаружения ранних сегментальных движений необходимо подобрать зонд определенного объема, который будет находиться в определенном соотношении с величиной сегментов макромолекул данного образца. Необходим также подбор определенной модели вращения радикала в области медленных движений. Использование широкого набора спиновых зондов для изучения тонкой структуры полимеров открывает широкие возможности в данной области [46]. [c.292]

    Вследствие высокой жесткости цепей и сильного межмолеку-лярного взаимодействия целлюлоза имеет температуру плавления, лежащую значительно выше температуры ее термического распада и поэтому в отсутствие растворителей всегда находится в твердом агрегатном состоянии смешанного аморфно-кристаллического фибриллярного строения, характерного для большинства линейных полимеров. В физической структуре целлюлозы обычно выделяют два уровня надмолекулярный, имея под этим в виду особенности строения наиболее мелких по размеру структурных элементов— фибрилл, содержание упорядоченной (кристаллической) и аморфной части, а также морфологический, отражающий взаимное расположение фибрилл и строение самих волокон, т. е. их геометрическую форму, наличие слоистой структуры. Целлюлоза была первым объектом исследования, на примере которого познавались особенности структуры полимеров. Поэтому не удивительно, что для объяснения ее структурных особенностей предложено большое число моделей, превышающее несколько десятков, подробно рассмотренных в ряде обзоров [13, 14]. Тем не менее, ни одна из предложенных моделей не объясняет все экспериментальные факты, что обусловливает необходимость дальнейших исследований [15]. [c.19]


    Рентгенограммы неориентированных полимеров в аморфном состоянии при 20°С характеризуются одним или несколькими диффузными рефлексами в виде колец [9, с. 156 53]. Если эластомер способен кристаллизоваться при растяжении, то на фоне аморфного гало появляются резкие кристаллические рефлексы в виде дуг различной протяженности. Наложение кристаллического рефлекса на гало позволяет полагать, что в аморфной фазе сохраняется в какой-то степени упаковка молекул, присущая кристаллической упорядоченности. По рентгенограмме аморфного полимера можно рассчитать функции радиального распределения атомов в образце. Если сопоставить экспериментальные данные с теоретически рассчитанными функциями для различных моделей полимера, то можно выбрать модель, которая ближе всего соответствует реальной структуре полимера. [c.39]

Рис. VI. 2. Модель структуры полимеров по Хоземан-ну Рис. VI. 2. Модель структуры полимеров по Хоземан-ну
    Как известно, структуру полимеров в аморфном состоянии рассматривали до исследований В. А. Каргина как систему хаотически расположенных макромолекул, существующих в различных конформациях и связанных друг с другом через взаимные захлесты и переплетения. Такая модель структуры полимеров в аморфном состоянии была использована для создания кинетической теории высокоэластичности в виде известной молекулярной сеточной модели и для построения других физических теорий, объясняющих особенности поведения аморфных полимеров в различных физических состояниях. Структуру же полимеров в кристаллическом состоянии представляли в виде кристаллитов, вкрапленных в аморфную матрицу. При этом представляли, что полимерные кристаллиты, размеры которых значительно меньше длины макромолекул, соединены проходяпщми через них цепями (известная модель бахромчатых мицелл ). [c.6]

    Ряд особенностей ПВХ, о которых подробнее будет сказано ниже, обусловили то обстоятельство, что для характеристики упорядоченности структуры ПВХ долгое время применяли качественную оценку кристалличности —по числу наблюдаемых рефлексов, по резкости, оцененной на глаз, по числу слоевых линий на текстуррент-генограммах ео, 61 относительной интенсивности рефлексов > . Значительно большую объективность в оценке упорядоченности различных образцов полимеров дает использование понятия степень кристалличности . Оно было введено более 15 лет назад II основывалось на распространенной тогда войлочной модели структуры полимеров. [c.211]

    Рассмотрение кинетики набухания в указанных аспектах приводит к проблеме решения уравнения нестационарной диффузии в условиях перемещающихся границ. Точное решение задач подобного рода известно лишь в очень ограниченном числе случаев [27, 28]. Метод аналитического решения задач диффузии (теплопроводности) при наличии движущихся границ предложен [29—31]. Этот метод основан на разложении искомого решения в ряд по некоторым системам мгновенных собственных функций соответствующей задачи. Таким образом, рассмотрение процесса набухания с учетом диффузионных явлений приводит к весьма сложной проблеме решения уравненийТмодели. Этот подход к описанию кинетики набухания нельзя признать исчерпывающим по ряду причин. Так, здесь недостаточно четко отражены физические особенности внутренней структуры полимеров. Параметры моделей не имеют явной связи с молекулярными характеристиками ноли- [c.299]

    СН2=СН(СН2СН2),1СНз с ростом молекулярной массы п возрастает от нескольких сотен до нескольких сотен тысяч. Некоторые особенности структуры полимера можно выяснить с помощью ИК-спектроскопии [22]. Кривая А на рис. 4 представляет ИК-спектр гомополимера Филлипс , кривая Б — спектр сополимера этилена и бутена-1 приблизительно той же молекулярной массы, содержащего 2 мол. % бутена-1. Эти спектры записаны на ИК-спектрофото-метре Перкин — Элмер (модель 137). Кривые, соответствующие образцам А и Б, имеют ряд общих особенностей. Интенсивные полосы поглощения при 3, 5, 6, 8 и 13,9 мкм отвечают метиленовым группам, образующим цепь полимера, а полосы при 6,1,10,1 и 11,0 мкм — винильным группам. [c.176]

    Неупругое и пластическое деформирование можно рассматривать как следствие последовательного движения дислокаций и смещения связывающих областей. Поворотная модель дает полное молекулярное описание структуры полимера. И на этот раз имеется лишь слабое различие между упорядоченными н неупорядоченными областями. Печхолд указывает, что совершенный кристалл ПЭ может содержать до 4 поворотов на 1000 групп СНг, в то время как в структуре типа расплава их число достигает 200 на 1000. Хотя эта концентрация столь велика, что исключает и ближний, и дальний порядок, какая-то логика в организации пространства, заполненного цепными молекулами, должна сохраниться. Печхолд предложил подходящие модели — сотовую и меандровую (рис. 2.1, в). Он полагает, что последняя модель более вероятна и может существовать в частично кристаллических волокнах (рис. 2.18,6) и в каучуках [11, 14Г]. Упомянутые ранее а-, р- и 7-релакса-ционные переходы объясняются в рамках данной модели движением поворотных блоков, замораживанием вращения сегмента из-за отсутствия свободного объема и существованием поворотных ступеней и скачков соответственно в аморфной и кристаллической областях [11]. Хотя эксперименты по рассеянию нейтронов [100—104] в значительной степени опровергают наличие четкого меандрового упорядочения цепей, предложение Печхолда было в высшей степени плодотворным для изучения структуры аморфных областей. [c.53]

    Предложены модели структур закаленных фаз высокого давления фуллеритов Сб(1 и С70, главной особенностью которых является трехмфная полимеризация фуллереновых молекул. В качестве основного механизма трехмерной полимеризации предложен новый (3+3) тип 1щклоприсоединения молекул См вдоль пространственных диагоналей ромбических структур сверхтвердых фаз. Вдоль боковых координатных осей предложены два типа связывания молекул традиционный для одномерной и двумерной полимеризации (2+2) тип циклоприсоединения и сращивание молекул фуллеренов обобществленными четырехчленными кольцами. Структуры уточнены методом профильного анализа дифрактограмм (метод Ритвельда), начальные значения координат получены из энергетического анализ устойчивости моделей структур методами молекулярной механики. Установлено, что по мере увеличения давления и температуры синтеза происходит сокращение межатомных расстояний в (3+3) циклах, что приводит к повыщению жесткости структуры. По сокращению межмолекулярных расстояний вдоль полимеризованных направлений структур фаз высокого давления выявлены стадии полимеризации фуллереновых молекул от димеров до объемных полимеров. При нормальных условиях обнаружена эллипсовидная форма дифракционных отражений на двумерной дифракционной картине сверхтвердых фаз, свидетельствующая об огромных упругих напряжениях, возникающих в процессе трехмерной полимеризации молекул Сбо в условиях негидростатических высоких давлений. [c.184]

    Микроскопическая теория кинетических процессов, протекающих в ориентированных аморфно-кристаллических полимерах под нагрузкой, создана Чевыче-ловым . Эта теория базируется на модели структуры ориентированных аморфнокристаллических полимеров, изображенной на рис. VI. 11. [c.207]

    Линейные размеры всех типов структурных микроблоков значительно меньше, чем контурная длина макромолекул, поэтому одна и та же макромолекула многократно проходит" через различные микроблоки. Между физическими узлами — микроблоками — имеются цепи сетки, которые являются частью макромолекулы. Если учесть, что микроблоки не являются стабильными образованиями и время их жизни уменьшается при повышении температуры, то за время наблюдения эти флуктуационные структуры могут многократно распадаться в одних местах и возникать в других, т. е. размазываться по объему полимера. Следовательно, модель упорядоченных областей (структурных микроблоков) является динамической, а для равновесных процессов она переходит в модель хаотически перепутанных цепей. Таким образом, модель сетки полимера, образованной физическими узлами в виде структурных микроблоков, не противоречит статистической теории высокой эластичности. В соответствии с этой моделью быстрая высокоэластическая деформация в эластомерах определяется подвижностью свободных сегментов и изменением конфигураций свободных цепей (между физическими узлами). Медленные физические релаксационпые процессы и вязкое течение определяются временами жизни физических узлов сетки эластомера, кинетическая стабильность которых определяется методами релаксационной спектрометрии. [c.127]

    Развитие представлений о гибкости цепей полимеров, накопление большого экспериментального материала по изучению их структур привели к созданию иных представлений о взаимном расположении макромолекул в полимере. Так, аморфный каучукоподобный полимер стала рассматривать как савокуп ость ог(СНЬ длинггы е, гибких, перепутанных между собой цепей, коюрые под влиянием теплового движения звеньев непрерывно изменяют свою форму. Модель кристаллического полимера предусматривала сосуществование в нем кристаллических и аморфных областей, причем принималось, что одна пепь может проходить через ряд кристаллических и аморфных областей. Согласно этой модели, в аморфных областях участки цепей могут взаимно перепутываться. [c.143]

    Как видно из рис. 62, для битумов I и 1П типов, где имеется коагуляционный каркас асфальтенов в слабо структурированной среде из смеси парафино-нафтеновых и ароматических углеводородов, сохраняются отмеченные на моделях закономерности независимого развития пространственной структуры полимера в межкаркасном пространстве. Однако эти закономерности нарушаются в случае битумов П типа с сильно структурированной смолами дисперсионной средой. В этой системе доминирующую роль дисперсной фазы играет ДСТ, а не разрозненные малочисленные асфальтены. Критическая концентрация образования пространственной структуры составляет при этом, как и для. модельных композиций, 4,5—Б% ДСТ. [c.245]

    Развитие математических моделей полимерных процессов [77, 78] позволяет рассчитывать показатели структуры полимера по математической модели Процесса, основой которой является многостадийная кинетическая схема образования полимерной молекулы (см. гл. 4). В результате такого моделирования удается не только рассчитать показатели структуры полимера (среднечисленную и среднемассовую молекулярные массы, а также значения длинноцепной и короткоцепной раз-ветвленностей и винилиденовой ненасыщенности), но и установить влияние различных условий проведения процесса на формирование структуры, а следовательно, и свойств полилтера. [c.98]

    Разработанная математическая модель позволяет рассчитать характер изменения параметров молекулярного состава и структуры полимера по длине двухзонного трубчатого реактора. На рис. 5.18 представлены расчетные профили М , Му , у и конверсии, а на рис. 5.19 для короткоцепной и длинноцепной разветвленности, а также винилиденовой ненасыщенности и реакционной температуры. Как видно из рис. 5.18, по мере [c.101]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

Рис. 11.10. Изотропно-зернистая модель структуры аморфного полимера, предложенная Иехом [66 69]. Рис. 11.10. <a href="/info/307461">Изотропно-зернистая модель</a> <a href="/info/176791">структуры аморфного полимера</a>, предложенная Иехом [66 69].
    Выше мы рассматривали структуру аморфных полимеров относительно того, какие конформации принимают в них макромолекулы, какие упорядоченные образования могут в них возникнуть, какие для этого необходимы условия, какими методами можно наблюдать поведение отдельных макромолекул в расплаве или растворе. Основной вывод, к которому пришли исследователи, заключается в том, что аморфный полимер представляет собой совокупность сильно перепутанных полимерных клубков, причем в гомополимерах упорядоченность существует только на масштабах сегмента макромолекулы. Наглядную картину того, что представляет собой расплав гибкоцепного полимера, дают сваренные спагетти (сырые спагетти являются моделью жесткоцепного полимера, их можно проще всего уложить только параллельно). [c.87]

    Второй подход для анализа структуры природного полимера употребляется еще очень редко, хотя в настоящее время осуществлен синтез многих модельных соединений, содержащих различные типы связей (см., например,и изучена их устойчивость в различных условиях. Эго связано отчасти с тем, что прямое сравнение низкомолекулярной модели с полимером не всегда законно и часто не дает результата, особенно при ферментативной деструкции. Однако использование методов, основанных на химическом изучении поведения гликопептидной связи, несомненно даст ценные сведения о природе этих связей и позволит разработать методы их избирательного разрыва. Так, например, изучение кине1ики деструкции муцина подчелюстных желез овцы привело к правильному заключению [c.571]

    И. С. Ениколоповым с сотр. [1, 25, 27] предложена статистическая модель топологической структуры сетки, моделируемой методом Монте-Карло. В соответствии с этой моделью сетка полимера состоит из циклических структур различного размера, соединенных в единую пространственную структуру. Такая модель дает возможность достаточно полно, хотя и громоздко, описывать структуру сетки. Здесь мы не будем подробно рассматривать эти представления, так как они достаточно полно описаны в литературе. [c.57]

    Структура армированных пластиков рассматривается как система определенным образом расположенных бесконечных цилиндров, представляющих собой армирующий наполнитель, пространство между которыми заполнено однородной полимерной матрицей. В такой модели структура материала может быть количественно описана объемной долей полимера или наполнителя и геометрическими параметрами пространственной рещетки наполнителя. Все основные теоретические закономерности получены на подобных моделях. Однако, как уже указывалось, реальные пластики представляьот собой не полностью упорядоченную стохастическую систему, которую сложно количественно описать с помощью небольшого числа параметров. Отклонения от этой идеализированной структуры будем называть [c.214]

Рис. 1.1 . Складчато-фибриллярная модель структуры аморфного полимера Аржакова — Бакеева — Кабанова [74] Рис. 1.1 . <a href="/info/307523">Складчато-фибриллярная модель</a> <a href="/info/176791">структуры аморфного полимера</a> Аржакова — Бакеева — Кабанова [74]

Смотреть страницы где упоминается термин Модели структур полимеров: [c.300]    [c.50]    [c.493]    [c.63]    [c.45]    [c.13]   
Синтетические полимеры в полиграфии (1961) -- [ c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте