Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободные радикалы при распаде молекул

    При реакции инициирования происходит образование первичного активного свободного радикала из молекулы мономера за счет воздействия тепла, света, облучения мономера частицами с высокой энергией, под влиянием инициаторов. Наибольшее распространение в промышленности находит полимеризация в присутствии инициаторов. В качестве инициаторов применяются такие вещества, которые способны распадаться с образованием свободных радикалов (перекисные и гидроперекисные соединения — перекись бензоила, перекись водорода, гидроперекись изопропилбензола, гидроперекись третичного бутила, а также различные азо- и диазосоединения-динитрил-азодиизомасляной кислоты, диазоаминобензол). Для ускорения распада инициаторов при низких температурах в систему вводят особые добавки — промоторы, которые вступают в реакцию с инициатором и тем самым ускоряют распад его на свободные радикалы. [c.99]


    Если одна из стадий продолжения цепи сильно экзотермична, то возможно разветвление цепи в результате распада возбужденной молекулы продукта реакции на два свободных радикала или молекулу и бирадикал. Например, при взаимодействии фтора с иодистым метилом, идущим по механизму [c.299]

    Однако одним из наиболее распространенных и часто применяемых на практике методов полимеризации является инициированная полимеризация. Она активируется соединениями, которые легко распадаются на свободные радикалы в условиях полимеризации. Такие соединения называются инициаторами полимеризации. Они содержат в своих молекулах неустойчивые химические связи (О—О, N—N, S—S, О—N и др.), которые разрываются при гораздо меньшей энергии, чем это требуется для образования свободного радикала из молекулы мономера (при ее активации). Инициаторами могут быть органические перекиси и гидроперекиси, некоторые азо-и диазосоединения и другие вещества  [c.391]

    Свободный радикал распадается на молекулу этилена и атом водорода  [c.176]

    Реакция галогенирования идет на свету (фотохимическое гало-генирование) или при нагревании [например, термическое хлорирование (300°С), используемое в промышленности]. Как было установлено акад. Н. Н. Семеновым, эта peaкцIrt имеет радикальноцепной характер. На первой стадии этого процесса происходит распад молекулы хлора на два свободных радикала  [c.51]

    Но часто в результате взаимодействия одного атома или свободного радикала с молекулой образуется два или более новых свободных радикала. Один нз них как бы продолжает цепь, а другие начинают новые цепи, образуя разветвление цепи (см. рис. 25). Оно может быть сплошным (рис. 25, б) —при каждом элементарном акте, редким (рис. 25,в), т. е. проходит не при каждом элементарном акте и вырожденным (рис. 25,г), когда разветвление идет за счет распада образовавшегося малоустойчивого промежуточного молекулярного продукта. [c.101]

    В результате каждого акта взаимодействия свободного радикала с молекулой инициатора образуется лишь один свободный радикал, т. е. непроизводительно для полимеризации гибнет молекула инициатора, которая могла бы дать начало двум растущим цепям. Таким образом, реакция индуцированного распада, приводя к понижению эффективности инициатора и более быстрому его расходованию, не влияет в заметной степени на кинетику начальной стадии полимеризации как следует из уравнений (IУ-21 — 23), индуцированный распад инициатора протекает без изменения общей концентрации свободных радикалов. [c.209]


    Образующийся свободный радикал инициирует дальнейший распад полисульфидных связей в полихлоропренполисульфиде. Процесс деструкции продолжается до образования стабильных связей К—5—К. В отсутствие тиурама образующиеся полимерные радикалы реагируют по двойной связи или а-метиленовой группой других полимерных молекул, вызывая структурирование полимерных цепей. Процессы деструкции под влиянием тиурам-полисуль-фидных связей происходят частично при щелочном созревании латекса и значительно более интенсивно при вальцевании или термопластикации, с одновременным взаи1 одействием образующихся полимерных радикалов с тиурамом по вышеуказанной схеме. Применение указанной системы регуляторов обеспечивает получение низкопластичного полимера, легко подвергающегося выделению из латекса методом зернистой коагуляции с образованием ленты на лентоотливочной машине, механически достаточно прочной в процессах формования, отмывки и сушки. Полимеры, полученные в присутствии серы и содержащие тиурам, легко пластицируются в процессе механической обработки, особенно в присутствии химически активных пластицирующих соединений (дифенилгуанидина совместно с меркаптобензтиазолом и др.) [24]. По мере израсходования тиурама или его разложения при нагревании или длительном хранении преобладают процессы структурирования. [c.374]

    Можно принять, что молекулы реагента в области, близкой к поверхности катализатора, изменяются, возбуждаются или взаимодействуют с образованием промежуточных соединений. Были предложены различные теории для объяснения каталитической активности. Согласно одной теории, промежуточное вещество рассматривается как ассоциация молекулы реагента с частью поверхности катализатора. Иными словами, молекулы каким-то образом присоединяются к поверхности. По другой теории молекулы попадают в область, примыкающую к поверхности катализатора,и находятся под влиянием поверхностных сил, т. е. молекулы все еще подвижны, но, тем не менее, изменились под воздействием указанных сил. В соответствии с третьей теорией на поверхности катализатора образуется активный комплекс, или свободный радикал. Этот радикал переходит с поверхности в главный газовый поток, возбуждая цепь реакций с исходными молекулами прежде, чем он распадается. В противоположность двум первым теориям, согласно которым реакция протекает вблизи поверхности, по данной теории поверхность катализатора просто является источником или возбудителем свободных радикалов, а реакция происходит в основной массе газа вдали от поверхности. [c.410]

    Однако возможен другой путь разложения молекул органических соединений, а именно радикально-цепной механизм распада молекул через свободные радикалы, при котором сначала, в первичной стадии процесса, образуются два свободных одновалентных радикала путем непосредственного разрыва простой связи. Затем радикалы, возникшие в первичной реакции, вступают во вторичные реакции с молекулами исходных веществ, радикалами и стенками, которые приводят к образованию конечных продуктов. В этом случае гамма получающихся конечных продуктов является следствием сложного многостадийного превращения, в котором участвуют промежуточные активные вещества в форме радикалов. Выход различных продуктов в сложном радикальноцепном превращении определяется соотношением скоростей конкурирующих между собой радикальных реакций, в которых радикалы появляются, заменяются или исчезают. Обыч-14 [c.14]

    СНз)зСООН -> (СНз)эСО + он Этот свободный радикал легко распадается на молекулу ацетона и СНз, что представляет собой процесс, обратный присоединению свободного радикала СНз по двойной связи молекулы ацетона [c.113]

    Согласно радикально-цепной теории крекинг представляет собой сложный цепной процесс, который идет с участием свободных алифатических радикалов. Первичной реакцией крекинга всегда является распад молекулы алкана по связи С—С на два свободных алкильных радикала (может случиться распад по связи С—Н, но при температурах крекинга он в 10 —10 раз менее вероятен). Свободные радикалы вступают в реакции с молекулами алкана, продуктами распада, реагируют между собой и со стенками. Эти вторичные реакции идут легко по сравнению с реакцией зарождения цепей, которая требует энергии активации не меньшей энергии диссоциации связи и определяют развитие и обрыв цепей. Длина цепи определяется конкуренцией реакций развития и обрыва цепей и в различных случаях принимает различное значение. В стационарном состоянии длина цепи определяется отношением скоростей реакций развития и зарождения цепей. [c.25]


    Распад сложного радикала происходит по связи С—С, находящейся в р-положении по отношению к углеродному атому, несущему свободную валентность, и продолжается до тех пор, пока не возникнет простой радикал (передатчик цепи), который начинает следующий цикл превращений. При достаточно высоких давлениях, однако, средняя длина свободного пробега уменьшается, а среднее время между соседними столкновениями радикала и молекул алкана становится меньше средней продолжительности жизни сложных радикалов и последние могут прореагировать с алканом раньше, чем распадутся, образуя более высокие предельные углеводороды, чем этан. Это предсказание теории находится в согласии с увеличением выхода более тяжелых парафинов [c.25]

    Следовательно, химические превращения представляют собой цепные реакции с участием свободных радикалов. Причем основными являются реакции продолжения цепи, в которых, в результате взаимодействия радикала с молекулами исходного сырья или промежуточного продукта, образуется новый активный центр. Свободные радикалы могут вступать также в обменные реакции, реакции распада и присоединения [51]. [c.159]

    Первичный распад молекулы парафинового углеводорода всегда происходит по связи С—С, а не по связи С—П, так как последняя связь значительно прочнее связи С—С (см. табл. 1). В результате пер- вичного распада молекулы парафинового углеводорода образуются два свободных радикала. [c.21]

    Мономолекулярный распад свободного радикала с образованием молекулы продукта реакции и нового свободного радикала или атома. Примерами таких реакций являются реакции  [c.272]

    В результате распада образуется новый свободный радикал, отличающийся от исходного лишь длиной цепочки. Он, в свою очередь, отщепляет еще одну молекулу мономера и процесс продолжается до тех пор, пока молекула полимера не распадется полностью или пока в результате реакции передачи или обрыва цепи не исчезнет свободная валентность на конце полимерной цепочки. [c.373]

    Решение. При распаде молекулы инициатора образуется два свободных радикала и вьщеляется молекула азота. Рассчитываем число молей инициатора в начале реакции на 100 г мономера  [c.219]

    Г. Образовавшийся в результате взаимодействия свободного радикала с молекулой углеводорода новый алифатический радикал сам бы тp i распадается на метил, этил и II , которые снова роашруют с новыми молекулами углеводородов, — происходит цепная регжция. Цепь обрывается при столкновении радикалов мои ду собой. [c.427]

    Процесс инициирования заключается в образовании свободного радикала из молекулы мономера вследствие возиикновения в ней непарных электронов. Образование свободных радикалов достигается нагреванием, действием света, рентгеновского излучения или особых инициирующих веществ. В качестве инициирующих веществ используются сравнительно неустойчивые соединения, например пероксид водорода, органические пероксиды и некоторые другие, способные распадаться на свободные радикалы. Образовавшийся свободный радикал инициатора вступает во взаимодействие с молекулой мономера по месту кратной (например, двойной) [c.372]

    В каждой мицелле, а примерно в одной из 700. Это обусловлено тем, что число радикалов, образующихся при распаде даже наиболее активных инициаторов, значительно меньше числа мицелл при обычньТх концентрациях мыла. В. Харкинс учитывает также возможность инициирования в каплях эмульсии и в водном молекулярном растворе мономера. Однако вероятность такого инициирования очень низка. Взаимодействие свободного радикала с молекулой мономера скорее будет происходить в местах скопления этих молекул — в мицеллах или каплях, а не с одиночными молекулами в растворе. Однако в силу несоразмерности поверхности капель и мицелл инициирование с большей вероятностью должно осуществляться в мицеллах змульгагора. [c.381]

    Из биохимии известно, что в растительном организме за счет распада АТФ высвобождается большое количество энергии, которая Трансформируется в физиологическую рйботу. В передаче энергии участвуют свободные радикалы (А. Сент-Дьёрдьи). Свободный радикал — это молекула или ее часть, несущая на внешней орбите электрический заряд. Любая заряженная частица имеет магнитный момент, который может быть определен и зарегистрирован приборами. При об7>единенин двух неспаренных электронов, если один из них вращается в противоположном направлении, происходит замыкание магнитных полей и магнитный момент исчезает. [c.437]

    Таким образом, свободные радикалы, возникающие при распаде инициаторов, входят в состав молекулы полимера в виде конечных групп. Как видно из приведенной схемы, такие цепи имеют вещественный характер, так как каждое звено цепной реакции увеличивает длину цепи полимера. Длина цепи (число циклов) в этом случае равна числу молекул мономера в молекуле полимера. Обрыв вещественных цепей приводит к завершению процесса образования макромолекул. Обрыв цепей может происходить в результате столкновения реагирующей цепи с радикалом, вследствие чего насыщаются свободные валентности. Столкновение радикалов может привести к обрыву цепи вследствие перехода атома водорода от одной реагирующей цепи к другой, в результате чего прекращается рост обеих молекул, так как у одной молекулы возникает двойная связь, а другая становится насыщенной. Обрыв цепи может произойти н после столкновения растущего"радикаЛа с молекулами растворителя, мономера или полимера, в результате чего насыщается свободная валентность данного радикала и образуется новый свободный радикал, начинающий новую цепь реакций. Этот процесс называется переносом цепи. Процесс переноса ц ти может приводить к разветвлению неЩёсЧЪённых цепей и [c.202]

    Вещество, с которым вза имодействует квант света или ПрОНСХО дит термический распад Длина цепи ч Свободный радикал, на котором происходит гибель цепи Молекула, которая рас-п адается Молекула, которая образуется г,к [c.402]

    Энергия разрыва связи С—С нормальных парафиновых углеводородов с увеличением длины цепи несколько уменьшается, а энергия разрыва связи С—Н вначале несколько уменьшается, а ири Сб и более становится постоянной (395 кДж/моль). Интересно отметить, что легкость разрыва связи С—С зависит от степени устойчивости свободных радикалов. Чем устойчивее получаемый свободный радикал, тем менее прочна связь. С повышением степени непредельности углеводородов возрастает и энергия разрыва связи, составляя, например, для этана, этн.яена и ацетилена соответственно 353,504 и 966 кДж/моль. Зная о прочности связи в молекуле углеводорода, можно судить в первом приближении о константе скорости распада по этой связи. [c.163]

    Второй вариант отличается от первого тем, что при обмене между адсорбционно-сольватными слоями ССЕ и дисперсионной средой топлива происходят самопроизвольные химические изменения (автоокисление). Химические превращения в процессе горения топлив представляют собой цепные реакции с участием свободных радикалов. Причем основными реакциями являются реакции продолжения цепи, в результате которых прн взаимодействии радикала с молекулами дисперсионной срсды или промежуточного продукта образуется новый активный центр. Свободные радикалы наиболее легко возникают в адсорбционно-сольватном слое ССЕ под воздействием адсорбционного поля, чему способствуют и другие внешние воздействия (термические и фотохимические и др.). Свободные радикалы могут вступать также в обменные реакции, реакции распада и присоединения. Глубина этих реакций зависит от температуры, степени дисперсности пузырьков кислорода, состава и структуры углеводородов, времени и других факторов. Углеводороды, в первую очередь попадающие в адсорбционно-сольватньп слой, имеют наиболее высокие значения сил ММВ и наиболее склонны к образованию радикалов. [c.214]

    Атом С1, образующийся в результате фотохимического распада 1к олекулы I2, присоединяется к молекуле СО с образованием свободного радикала O I. Последний реагирует с новой молекулой [c.241]

    Поэтому в целом ряде процессов значительно более вероятным оказывается взаимодействие свободных радикалов с молекулами исходных веществ или растворителя и мономолекулярные превращения свободных радикалов — изомеризация или распад. В силу принципа неуничтожимости свободной валентности в результате любого такого процесса в системе образуется новый свободный радикал. Если этот свободный радикал не является вследствие каких-либо структурных особенностей малоактивным, то он в свою очередь вступит в реакцию с молекулой исходного вещества или растворителя с образованием нового свободного радикала. Последо- [c.267]

    Эта реакция была изучена Л. И. Авраменко и Р. В. Лоренцо [16]. Ее константа скорости к = 1,8-10- Те-шощт мoл секг . Выше мы видели что эту реакцию Льюис и Эльбе ввели в схему окислепия этилена. Согласно этим авторам, радикал СзНз присоединяет далее кислород, получающийся перекисный радикал взаимодействием с этиленом превращается в соответствующую перекись. Последняя распадается, давая две молекулы формальдегида. Этот путь, следовательно, также приводит к образованию формальдегида и притом без присоединения свободного радикала (ОН) по месту двойной связи. На этом пути, правда, не получается метильный радикал. [c.374]

    Так, при освещении смеси СО и С1а светом длины волны 4000.— 4360 А на каждый поглощенный квант света образуется до 1000 молекул o ia- Это объясняется возникновением цепной реакции. Атом 1, образующийся в результате фотохимического распада молекулы Ij, присоединяется к молекуле СО с образованием свободного радикала С(Х1. Последний реагирует с новой молекулой СЦ, образуя продукт реакции O lj и регенерируя атом С1, который может присоединиться к новой молекуле СО. Возникнет последовательность чередующихся реакций  [c.253]

    В качестве римера мо -кно рассмотреть реакцию -еермического распада (крекинга) этана. Молекула этана, распадаясь по связи С — С, дает два свободных радикала СН ,  [c.288]

    Мономолекулярпый распад свободного радикала с образованием молекулы продукта реакции и нового свободного радикала или атома  [c.292]

    Примером термической цепной деполимеризации является деполимеризация полиметилметакрилата. При высокой температуре по-лиметилметакрилат почти количественно дает исходный мономер — метилметакрилат. На цепной характер реакции указывает резкое торможение процесса небольшими добавками ингибиторов цепных реакций. Зарождение цепей происходит в результате разрыва цепочки полимеров, причем образуется свободный радикал, который легко распадается с отщеплением молекулы мономера, т. е. по реакции, обратной реакции роста цепп  [c.369]

    При распаде гидроперекиси образуются два свободных радикала, которые, реагируя с молекулами парафина, дают различные продукты. Характер последних определяется строением гидропере- [c.54]


Смотреть страницы где упоминается термин Свободные радикалы при распаде молекул: [c.407]    [c.214]    [c.18]    [c.401]    [c.22]    [c.107]    [c.373]    [c.317]    [c.180]    [c.84]    [c.101]    [c.121]    [c.300]    [c.369]   
Курс химической кинетики (1962) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Распад молекул на радикалы

Свободные радикалы

Свободные радикалы ион-радикалы



© 2025 chem21.info Реклама на сайте