Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолформальдегидная смола веществ

    Процесс производства фенолформальдегидной смолы характеризуется большой энергоемкостью и является потенциально-опасным, поскольку в этом процессе задействованы горючие и ядовитые вещества - фенол, формальдегид, гидроокись бария. Процесс является периодическим. Эти,ми обстоятельства.ми обусловлено применение интеллектуального тренажера, который предназначен для повышения квалификации и уровня подготовки производственного управленческого персонала процесса производства СФЖ-309, Эта задача является задачей повышения надежности, безопасности и эффективности современных систем управления потенциально-опасными химическими производствами. [c.196]


    Различная способность к графитации коксов объясняется неодинаковыми возможностями для ориентации ароматических макромолекул, образующихся при нагреве органических веществ, что определяется двумя факторами химическим строением исходного вещества [1—4] и условиями его карбонизации )[5, 6]. В этих работах показано, что изменение условий карбонизации, т. е. приложение давления на стадии карбонизации к неграфитирующемуся в обычных условиях веществу позволяет получить графитирующийся кокс. Под давлением в материале формируются участки с предпочтительной ориентацией ароматических макромолекул, что обусловливает получение кокса с высокой способностью к графитации. Сравнительное исследование электронных свойств (термоэлектродвижущей силы, электропроводности) кокса фенолформальдегидной смолы (ФФС), полученного без приложения давления и под давлением, показало, что основные этапы структурных превращений в этих материалах практически одинаковы, несмотря на их различную способность к графитации [7]. [c.188]

    При поликонденсации, в которой участвуют вещества, имеющие три и более функциональных групп, получаются трехмерные сетчатые структуры. Такой процесс носит название трехмерной поликонденсации. Примером является образование фенолформальдегидных смол (резитов) из фенола и формальдегида  [c.159]

    Демонстрационные опыты взаимодействие расплавленного фенола с натрием, вытеснение фенола из фенолята угольной кислотой и получение фенолформальдегидной смолы —следует проводить в вытяжном шкафу, имеющем витринное стекло. При отсутствии шкафа опыты проводят в демонстрационных пробирках в конце урока и вентилируют помещение. По окончании опытов посуду тотчас же моют, а вредные вещества запирают в шкафу учителя. [c.91]

    В более редких случаях однородные линейные макромолекулы под влиянием изменения внешних условий (например, температуры и давления) или добавок посторонних веществ могут вступать друг с другом в химическую (валентную) связь, устанавливающуюся в отдельных участках цепи на ее длине в виде мостов или перемычек (рис. 115, в). Такие молекулы получили название сшитых молекул ( сшитых структур). Так как такое сшивание происходит в пространстве, то макромолекулы становятся трехмерными образованиями и превращаются в жесткие системы с характерными для них свойствами (нерастворимостью, отсутствием плавкости, эластичности, пластичности и др.). Типичными ВМВ с трехмерными молекулами являются фенолформальдегидные смолы. [c.356]

    Некоторые вещества (например уротропин), будучи введены в пресспорошок на основе новолачной фенолформальдегидной смолы, превращают термопластичную смолу в термореактивную. Иногда в прессовочные композиции вводят пластификаторы и красители. [c.29]


    В процессы поликонденсации вступают соединения, содержащие активные функциональные группы, способные к реакции конденсации. Поликонденсация наряду о образованием полимера всегда сопровождается выделением низкомолекулярных веществ, таких, как вода, аммиак, хлороводород и др. Например, образование фенолформальдегидной смолы может быть представлено следующими последовательно протекающими реакциями взаимодействия фенола с формальдегидом  [c.155]

    Фенол — одно из важнейших в промышленном отношении органических веществ. Он давно применяется как дезинфицирующее средство (карболовая кислота), служит сырьем для получения лекарственных препаратов и красителей. Однако расход фенола на эти цели сравнительно невелик. Наибольшее количество фенола (около 50 % от общего его производства) расходуется для получения фенолформальдегидных смол, получения капролактама через циклогексан (15—20 % фенола). [c.165]

    Далее образовавшийся продукт реагирует с другими молекулами метаналя, а затем —с молекулами фенола и т. д. В результате этих реакций получаются высокомолекулярное вещество — фенолформальдегидная смола и побочный продукт —вода. Так как в молекулах фенола подвижные атомы водорода находятся не только в положении 2, но и в положениях 4 и 6, то в реакции с метаналем участвуют и эти атомы водорода. Поэтому синтезируется полимер разветвленного строения  [c.28]

    Синтетические соединения называют обычно по тем исходным продуктам, из которых они получаются, добавляя приставку поли-, например полиэтилен, полистирол, поливинилхлорид и т. п. В случае продуктов поликонденсации к названию исходных продуктов добавляется слово смола , например, фенолформальдегидная смола, мочевиноформальдегидная смола и т. д. В некоторых случаях одно и то же соединение может иметь несколько названий, в соответствии с теми различными веществами, из которых оно может быть получено. Так, полиэтиленоксид (продукт полимеризации окиси этилена), если он получается из гликоля, носит названне полиэтиленгликоля. [c.181]

    В настоящей работе исследовали сравнительную окисляемость карбонизованных пековых и модифицированных пековых связующих. Модификация пека применялась с целью увеличения выхода коксового остатка и плотности кокса. В качестве модификаторов применялись такие химически активные вещества (ХАВ), как сера, борная кислота, нитрат алюминия и фенолформальдегидная смола. На основании проведенных исследований были определены оптимальное количество к вид ХАВ. [c.106]

    При ручном нанесении грунтовки следует использовать индивидуальные средства защиты (рукавицы, защитные пасты типа ИЭР-1 и др.). Каждый работающий должен быть обеспечен спецодеждой. Токсичность грунтовки ГТ-760 ИН определяется наличием в ней бензина, битума, фенолформальдегидной смолы. При работе необходимо соблюдать правила безопасности, позволяющие обеспечить содержание в воздухе рабочей зоны предельно допустимых концентраций (ПДК) этих веществ не выше нормы. В производственных помещениях следует осуществлять систематический контроль за содержанием в воздухе вредных веществ (в мг/м ) ПДК бензина - 300, ПДК фенола - 0,3, ПДК формальдегида - 0,5. [c.8]

    Термическое разложение угля часто характеризуют определением потери веса образца или изменением выхода летучих веществ в коксовом остатке. Такого рода исследования были проведены на примере указанной выше фенолформальдегидной смолы. Навески смолы с измельчением 1—3 мм сбрасывали в нагретый реактор п выдерживали в течение определенного времени, после чего реактор быстро вынимали из печи и охлаждали. Измеряли количество выделившегося газа и потерю веса образца. [c.147]

    К числу старейших синтетических полимеров, все еще имеющих очень важное значение, относятся полимеры, образующиеся при реакции между фенолами и формальдегидом,— фенолформальдегидные смолы (бакелит и родственные ему полимеры). Фенол обрабатывают формальдегидом в присутствии щелочи или кислоты, и образуется высокомолекулярное вещество, в котором большое число фенольных колец связано посредством групп —СНд— [c.770]

    В наше время часто ту или иную новую науку — кибернетику, ядерную физику или молекулярную биологию — называют наукой века . К таким наукам относится и старейшая наука химия, изучающая превращения вещества, результатом развития которой явилось создание новых соединений, открывших дорогу технической революции, таких как неизвестные ранее, но крайне нужные в наше время вещества — красители, антибиотики, каучуки, пластмассы, синтетические волокна, высококалорийное топливо и т. п. Уже давно используются такие природные высокомолекулярные соединения, как целлюлоза, крахмал, белки, кожа, шерсть, шелк, мех, каучук, обладающие многими ценными свойствами. Постепенно ученые научились придавать полимерам нужные механические и физические свойства. Изучив химическую природу полимеров и возможности ее направленного изменения, стали получать новые ценные материалы (например, вискозу) путем модификации природных полимеров. Более того, сложнейшие по структуре природные полимеры, а также и совершенно новые, которые природа не синтезирует (полиэтилен, полипропилен, полистирол, поливинилхлорид, фенолформальдегидные смолы, полисилоксаны и др.), созда- [c.4]


    Аморфное фазовое состояние полимеров характеризуется отсутствием дальнего порядка, флуктуационным ближним порядком в расположении молекул, устойчивость которого зависит от агрегатного состояния вещества, изотропией формы и физических свойств (т. е. Ил независимостью от направления), а также отсутствием четко выраженной температуры точки плавления. Для низкомолекулярных тел аморфному фазовому состоянию отвечает только жидкое агрегатное состояние, поскольку в твердом агрегатном состоянии они характеризуются трехмерным дальним порядком, т. е. образуют правильную кристаллическую решетку. Исключение составляют природные и синтетические смолы (природные смолы — канифоль, янтарь синтетические—фенолформальдегидные смолы с молекулярной массой 700—1000 и др.), а такл<е обычное силикатное стекло. Для смол и стекла переход из твердого агрегатного состояния в жидкое и обратный переход из жидкого в твердое протекает плавно. При этом изменений в структуре не происходит, так как в твердых и жидких стеклах наблюдается только ближний порядок расположения молекул. Такой постепенный переход из одного агрегатного состояния в другое без изменений в структуре, специфичный для аморфного фазового состояния, называют стеклованием, а аморфные твердые тела стеклообразными, или стеклами. [c.73]

    В составе среднетемпературной буроугольной смолы содержание фенолов достигает 15—18%, кислот, кетонов, лактонов 14—15% 13]. На их основе получают поверхностно-активные вещества, флотореагенты, фенолформальдегидные смолы. [c.105]

    Формальдегид в громадных количествах используется для получения фенолформальдегидных смол, в синтезе изопрена (диоксановыи метод), для синтеза многих лекарстве1шых веществ и красителей, для дубления кожи, как дезинфицирующее, антисептическое и дезодорирующее средство. Дело в том, что формальдегид легко соединяется с белками, делая при этом их более грубыми и умерщвляя. Но одновременно он убивает и другие микроорганизмы. Это и используют, применяя 40 %-ный раствор формальдегида в воде (формалин) как антисептик и для консервирования тканей, а первая искусственная пластмасса на основе формальдегида и фенола, полученная в 1905 году бельгийцем Бакеландом (бакелит), в разных модификащгях широко используется и сегодня. [c.93]

    По данным 2-го завода полиграфических красок, образец по-верхностнс-активного препарата Дуомина Т при испытании в качестве вещества, препятствующего оседанию твердой фазы в краске Д.1Я глубокой печати, представляющей 25-процентную суспензию гидрата окиси алюминия в толуольно-скипидарно.м растворе фенолформальдегидной смолы (копала 44), показал, что ъто вещество препятствует осаждению указанного пигмента при введении 3% Дуомина Т и стабилизирует систему в процессе ее хранения в течение месяца. Стабилизация красок для глу-боко печати имеет большое значение в деле улучшения качества печатной продукции. [c.187]

    Поликонденсация - реакция между полифункциональными молекулами, которые присоединяются друг к другу с отщеплением какой-либо простой молекулы (обычно воды). В отличие от полимеризации, которая происходит как цепной механизм (т. е. промежуточные соединения вещества представляют собой реакционно способные частицы-радикалы или ионы), поликонденсация протекает ступенчато с образованием на каждой стадии устойчивых соединений, требующих дальнейшей активации. Конечными продуктами поликонденсации могут быть макромолекулы с различной структурой, в зависимости от условий проведения реакции. Рассмотрим механизм поликонденсации на г риг. гре взаимодействия фенола и формальдегида. Продуктом этой поликоядесации являются фенолформальдегидные смолы. [c.235]

    Для повышения трения в тормозных механизмах необходимы и материалы с высоким коэффициентом трения, успешно работающие при высоких давлениях, скоростях скольжения, температуре. Для этих целей используют многокомпонентные неметаллические и металлические спеченые материалы, состоящие из связующего и наполнителя. К ним относятся асбофрикционные материалы, содержащие асбест, Си, А1, РЬ, латунь, графит, соли и оксиды различных металлов в смоле полимеробразующего вещества. Например, ретинакс, изготовленный на основе асбеста, сульфата бария, рубленной латуни в фенолформальдегидной смоле, обеспечивает коэффициент трения до 0,40. [c.632]

    КОНТАКТ ПЕТРОВА представляет собой густую прозрачную жидкость, от темно-желтого до бурого цвета с синим отливом. К- П. содержит около 40% нафтеновых сульфокислот, 15% вазелинового масла, небольшое количество свободной серной кислоты и воды. Подобно мылам К. П. проявляет поверхностноактивные свойства, но в отличие от них смачив. зет и эмульгирует даже в кислой среде, не требуя нейтрализации. К- П., эмульгируя жиры, увеличивает поверхность соприкосновения с омыляющей жидкостью, ускоряя тем самым реакцию. К. П. впервые получен в России в 1912 г. Г. С. Петровым и применен как эмульгатор в нефтепромышленности. К- П. образуется в результате действия серной кислоты, серного ангидрида или олеума на высококипящие фракции нефти при очистке нефтепродуктов (керосина, газойля, солярового масла и др.), содержится также в кислых гудронах, образующихся при сернокислотной очистке нефтепродуктов. К. П. широко применяется в различных отраслях промышленности для расщепления жиров, в качестве синтетических моющих средств, антикоррозионных веществ, пластификаторов для цемента и бетона, как промывные жидкости при бурении, в текстильной промышленности при крашении и обработке тканей, в производстве фенолформальдегидных смол, клеев и др. [c.134]

    Кроме этого Ф. получают сплавлением солей бензолсульфокислоты со щелочами. Ф. применяют в производстве фенолформальдегидных смол, капролактама, пикриновой кислоты, красителей, пестицидов, лекарственных препаратов (салициловой кислоты, салола, аспирина), водный раствор (карболовая кислота) применяют для дезинфекции помещений, белья, мест общественного пользования и др. Из Ф. готовят алкилфенолы, которые служат для стабилизации бензинов, масел на их основе прои зводят поверхностно-активные вещества. Ф. является первым членом гомологического ряда фенолов—ароматических соединений, содержащих гидроксильные группы, непосредственно связанные с ароматическим ядром. [c.260]

    ФЕНОЛЫ — органические соединения ароматического ряда, содержащие гидроксильные группы, непосредственно связанные с ароматическим ядром. По числу гидроксилов различают одноатомные, двухатомные и многоатомные Ф. Простейшим из них является первый член ряда — оксибензол С,НвОН, называемый просто фенолом (карболовая кислота) оксипроизводные толуола (метил-фенолы) называют орто-, мета- и пара-крезоламЛ, а оксипроизводные ксилолов — ксиленолами. Ф. нафталинового ряда называются нафтолами. Простейшие двухатомные Ф. о-диоксибензол называют пирокатехином, л-диоксибен-аол — резорцином, п-диоксибензол — гидрохиноном. Большинство Ф.— бесцветные кристаллические вещества, иногда жидкости. Некоторые имеют характерный запах. В воде растворимы лишь простейшие Ф., в органических растворителях — почти все. Ф.— слабые кислоты, со щелочами образуют солеобразные вещества — феноляты. Источником получения многих Ф. является каменноугольная смола и деготь бурого угля и древесины. Ф. получают и синтетически. Применяют как антисептики, антиокислители, для производства фенолформальдегидных смол, полиамидов и других полимеров на основе Ф. синтезируют красители, лекарственные и парфюмерные препараты, пластификаторы, пестициды, поверхностно-активные вещества и др. Ф. — токсичные вещества. [c.261]

    Из схем видно, что фенолформальдегидная смола действует как сшивающий агент, связывая между собой отдельные цепи поливинилацеталевой смолы. В результате пленка не растворяется в тех веществах, в которых растворимы исходные смолы, и не может быть расплавлена или переведена в пластичное состояние, тогда как исходная поливинилацеталевая смола плавкая и растворимая. Пленку можно только частично или полностью разрушить действием высокой температуры или агрессивных реагентов (муравьиной кислоты, хлористого цинка). [c.169]

    Углеродные материалы с недостатком водорода и избытком кислорода имеют в своей структуре сильно развитые поперечные связи между углеродными сетками, что затрудняет при высокотемпературной обработке перегруппировку структурных элементов, необходимую для создания графитовой структуры. В материале образуется структурная пористость, затрудняющая рост кристаллитов. В неграфИтирующихся материалах при термообработке графитовую структуру приобретает лишь часть вещества. Естественно, все это достаточно условно в экспериментах по принудительной ориентации графитоподобных слоев на стадии карбонизации (карбонизация под давлением 20 МПа) считающаяся неграфитирующейся даже при 3000 °С фенолформальдегидная смола графитировалась подобно нефтяному коксу [8, с. 14-16]. Из малоокис-ленных, богатых водородом сырьевых материалов (нефтяные и пековые крксы) получаются, как правило, углеродные материалы, легко графи-тируемые. [c.14]

    Графитирующиеся материалы, как это отмечалось выше, получают из малоокисленных углеродных веществ, богатых водородом, которые размягчаются в начальной стадии карбонизации (нефтяные и пековые. коксь), коксующиеся угли и т.д.). Неграфитируемые материалы обычно получаются из богатых кислородом веществ в начальной стадии карбонизации они не размягчаются. Большое содержание кислорода (или недостаток водорода) приводит к образованию между углеродными сетками поперечных вязей, создающих "жесткую" структуру. Создание "жесткой" структуры, например, путем предварительного термоокисления в интервале температур 200—300 °С отпрессованных образцов, ухудшает графитируемость материала [34, с. 66—70], С Другой стороны, введение в шихту ряда элементов и химических соединений, действующих как катализаторы, облегчает графитацию материала [108]. Так, введение кремния в материалы разной графитируемости, полученные из фенолформальдегидной смолы, привело к совершенствованию графи-toпo oбныx слоев, образующих кристалл. А это в свою очередь в графи-тирующих материалах сдвинуло процесс графитации в область более низких температур [9, с. 134—139]. [c.173]

    Основными пропитывающими веществами для углеродных материалов служат фенолформальдегидные смолы, такие как бакелитовый лак марки А и резольная фенолформальдегидная смола. Для увеличения стойкости пропитывающего вещества к щелочам смолы модифицируют добавками дихлоргидрина глицерина - до 20 % от всей смолы. Для пропитки графита используют иногда лак "эfинoль" — раствор дивинил-ацетилена в ксилоле. Графит, пропитанный лаком "этиноль", рекомендуется использовать при температуре не выше 100 С. При этой температуре пропитанный графит стоек в различных органических растворителях, некоторых кислотах и щелочах средней концентрации при длительных (до 2200 ч) испытаниях, когда нагрев до 100°С сочетается с охлаждением до комнатной температуры. [c.259]

    Можно предполагать, что поверхность образующейся ценосферы каким-то образом связана с начальной геометрической формой частицы. Наблюдения о такой связи были проведены на примере пиролиза фенолформальдегидной смолы — спекающегося вещества, до некоторой степени моделирующего уголь. [c.146]

    Побочные реакции. Несмотря на то, что в реакции Пиктэ— Шпенглера исходными веществами являются те же самые реагенты, которые применяются дня получения фенолформальдегидных смол и многих друг их менее сложных соединений, имеется всего лишь несколько указаний на протекание определенных побочных реакций. Так, прн конденсации ( -фенилэтиламина с метилалем Б присутствии СО.ПЯНОЙ кислоты образуется главным образом бйс-(р-фенилатиламино) метан [45]. При обработке гомопиперониламина метилалем и соляной кислотой образуется п коли-<№стве около 70% полимерное основание, которое получается также и в том случае, если вместо метилаля употреблять формальдегид [3]. Однако при температуре 130° из гомопиперониламина и формальдегида в присутствии соляной кислоты образуется [c.186]

    Смолы — очень сложные по химическому составу органические вещества. С. природные (С. п.)—вещества, выделяемые растениями при нор.мальном физиологическом обмене. Наиболее богаты С. п. тропические растения, а также хвойные, С.п. применяют в мыловарении, для проклейки бумаги, в медицине, в парфюмерии. В настоящее время С. п. заменяют синтетическими — полимерами, напр, мочевиноформальдегидные. С. продукты поликонденсации мочевины с формальдегидом, фе-иолоальдегидные С.— продукты поликонденсации фенолов и альдегидов (напр., фенолформальдегидные смолы). Синтетические смолы применяют для производства различных пластмасс. [c.123]

    В цехах пластмасс загрязнители выделяются в виде паров компонентов пластмасс или в виде пластиковой пыли. В производстве связующих на основе полиэфирных смол выделяется до 2 г стирола и около 1 г гипериза, а на основе фенолформальдегидных смол - до 2 г формальдегида и до 1 г фенола на 1 кг соответствующего вещества, входящего в смолу. При прессовании изделий из материалов на полиэфирном связующем выделяется около 20 г стирола и 10 г гипериза, а на фенолформальдегидном связующем - около 370 г формальдегида и 100 г фенола на 1 кг соответствующего вещества в составе смолы. При раскрое, обрезке и распиловке изделий из стеклоткани выделяется ориентировочно от 50 до 200 г/ч, а при шлифовке изделий - до 300 г/ч пыли стеклопластика. Примерные составы газовьгх выбросов производства различных видов пластмасс приведены также в разделе 2.2.5 (табл.2.25). [c.106]

    Использование таннинов для селективного осаждения элементов в кислой среде основано на том, что они, являясь сложными эфирами глюкозы и галловой или диагалловой кислоты, способны образовывать комплексные соединения, не растворимые в водных растворах. Вместо таннина могут применяться технические дубильные вещества, а также фенолформальдегидные смолы — продукты конденсации многоатомных фенолов и формальдегида, которые осаждают элементы в кислой и щелочной средах. [c.102]

    Производство древесностружечных плит Процесс изготов тения древесностружечных плит состоит в прессовании древесных частиц различного размера и формы, смешанных со связую щими веществами — преимущественно карбамидоформальдегид-ными (реже фенолформальдегидными) смолами, техническими лигносульфонатами Наиболее прочные плиты получают из ре заной стружки, изготовляемой на стружечных станках из тех нологической щепы, дровяной древесины и крупных отходов деревообработки, но используют также опилки и другие от ходы Для производства древесностружечных плит предпочитают древесину сосны, ели и тополя Чаще всего плиты вырабатывают трехслойные, причем наружные слои делают из более мелких частиц с увеличенным количеством связующего вещества [c.40]

    Полученный впервые А М Бутлеровым уротропин руктура подобна структуре адамантана) находит широкое 1менение в производстве фенолформальдегидных смол, качестве твердого горючего ( сухой спирт ), диуретика, этивоподагрического и противоревматического средства работкой уротропина концентрированной НЫОз получа-взрывчатое вещество — циклонит (гексоген) Формальдегид применяют как дезинфицирующее, кон-)вирующее средство, для дубления кожи В качестве примера использования формальдегида интезе лекарственных веществ приведем получение из-тных жаропонижающих и болеутоляющих средств — гпъгина и пирамидона амидопирина) [c.613]

    Вторым направлением улучшения выбиваемости жидкостекольных смесей является применение добавок-разупрочнителей. В процессе прогрева формы при заливке металла происходит терморазупрочнение (деструкция) или выгорание добавки, приводящее к ослаблению структуры формы (стержня). В качестве добавок такого типа используют сахар- и крахмалсодержащие вещества и промышленные отходы, специальные синтетические добавки на основе переработки технических сахаров, а также комплексные добавки, включающие фенолформальдегидные смолы, растворы и эмульсии, содержащие полистирол, битум, латексы и т. д. [c.202]

    Фенолформальдегидные пластмассы (фенопласты). Фенопласты — важнейшие в технике пластические масеы. Их изготовляют на основе фенолформальдегидных смол, образующихся конденсацией фенола и формальдегида в присутствии катализатора. В том случае, если катализатором является кислота, например соляная, то образуется так называемая новолачная смола. Она представляет собою светло-желтое, похожее по внешнему виду на янтарь, вещество, легкоплавкое и не затвердевающее даже при длительном нагревании, растворимое в органических растворителях, например в спирте и ацетоне. Углеродная цепь этого полимера не разветвлена. Для получения новолачной смолы к смеси кристаллического фенола и формалина прибавляют немного кислоты и осторожно непродолжительное время нагревают до появления Лгути, При отстаивании смеси водный слой отделяется, после чего смола постепенно отвердевает. [c.265]


Смотреть страницы где упоминается термин Фенолформальдегидная смола веществ: [c.296]    [c.398]    [c.20]    [c.56]    [c.181]    [c.260]    [c.143]    [c.95]    [c.457]    [c.123]    [c.73]   
Химия высокомолекулярных соединений (1950) -- [ c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Фенолформальдегидные смолы



© 2025 chem21.info Реклама на сайте