Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модель Полинга и Кори

    Рпс. 7. Модель н схема спирали Полинга—Кори. [c.44]

    На рис. 5.1 приведены некоторые доступные синтетические акцепторные соединения. Можно ли использовать такие органические краун-эфиры в качестве аналогов ферментов для разделения энантиомеров (или рацемических смесей) Крам и др. сообщили, что хиральные комплексы краун-эфиров действительно обладают этим удивительным свойством селективно связывать один из антиподов аминокислотных производных [134—136]. При создании акцепторных молекул неоценимую помощь оказывают молекулярные модели Кори — Полинга — Колтуна [137, 138]. Пространственные модели дают возможность находить акцепторные структуры, способные связывать в качестве доноров определенные аминокислоты. Например, главное при создании акцептора — это вопрос влияния взаимного расположения центров связывания на их связывающую снособность. Другая проблема заключается во введении заместителей в такие положения, которые направлены к функциональным или связывающим центрам до-норных соединений [137]. [c.267]


    Не более оригинальна и каркасная модель сборки белка, базирующаяся на постулате, непосредственно следующем из концепции Полинга-Кори о якобы энергетической предпочтительности регулярных вторичных структур, которые в связи с этим должны играть центральную роль в определении пути структурирования белковой цепи. Предполагается, что процесс сборки начинается с появления изолированных и на первых порах изменчивых вторичных структур ("мерцающих кластеров"). Взаимодействуя друг с другом, они вытесняют молекулы воды, стабилизируют свои структуры и посредством гидрофобных взаимодействий образуют единый, достаточно жесткий каркас третичной структуры [23, 24]. Близкое и столь же умозрительное представление о свертывании белковой цепи заложено в так называемой диффузионно-коллизионной модели [25, 26]. Аналогичные по существу механизмы сборки белка рассматривались также в работах [27, 28]. [c.86]

    На эти боковые группы и ложится основная нагрузка при работе фермента, пептидная же цепь играет роль опорного скелета. Согласно структурной модели Полинга — Кори, она свернута в спираль, которая в обычном [c.90]

    Пептидная связь обладает некоторой гибкостью. Конформацион-ные карты на рис. 2.3 и 2.5 построены в предположении жесткой пептидной связи, имеюш,ей параметры Полинга — Кори (рис. 2.1,а). Дальнейшее уточнение модели требует введения потенциалов изменения валентных углов, длин связей н торсионного вращения вокруг пептидной связи. Это, естественно, делает конформационное пространство одного остатка многомерным, а любое непосредственное использование или исчерпывающее описание — затруднительным. Приведем для оценки отклонения, отвечающие увеличению потенциальной энергии на 1 ккал/моль  [c.34]

    Используя специально изготовленные точные модели, Полинг и Кори изучили возможные способы скручивания или [c.169]

    Третичная и четвертичная структуры белков определяются при помощи рентгеноструктурного анализа, который впервые был проведен применительно к миоглобину и гемоглобину Дж. Кендрью и М. Перутцем в Кембридже. Значение рентгеноструктурного анализа белков трудно переоценить, так как именно этот метод дал возможность впервые получить своеобразную фотографию белковой молекулы. Для получения информативной рентгенограммы необходимо было иметь полноценный кристалл белка с включенными в него атомами тяжелых металлов, так как последние рассеивают рентгеновские лучи сильнее атомов белка и изменяют интенсивность дифрагированных лучей. Таким образом можно определить фазу дифрагированных на белковом кристалле лучей и затем электронную плотность белковой молекулы. Это впервые удалось сделать М. Перутцу в 1954 г, что явилось предпосылкой Д 1я построения приближенной модели молекулы белка, которая затем была уточнена при помощи ЭВМ. Однако первым белком, пространственная структура которого была полностью идентифицирована Дж. Кендрью, оказался миоглобин, состоящий из 153 аминокислотных остатков, образующих одну полипептидную цепь, В результате было экспериментально подтверждено предположение Л. Полинга и Р. Кори о наличии в молекуле миоглобина а-спиральных участков, а также М. Перутца и Л. Брэгга о том, что они имеют цилиндрическую форму Несколько позднее М. Перутцем была расшифрована структура гемоглобина, состоящая из 574 аминокислотных остатков и содержащая около [c.43]


    Среди многих возможных спиральных структур, рассмотренных Полингом, Кори и другими исследователями, только одна структура отвечает всем требованиям, обеспечивающим максимальную стабильность. Эта структура, показанная на фиг. 33, носит название а-спирали. Согласно модели Полинга, [c.99]

    Вскоре появляется знаменитая серия работ Л. Полинга и Р. Кори (1951 г.), в которых авторы рассмотрели все ранее известные структурные модели полипептидов, в том числе предложенные Брэггом, Кендрью и Перутцем, и отвергли их. Вместо них они предложили две новые низкоэнергетические регулярные пространственные формы - а-спираль и р-складчатый лист. Один виток а-спирали включает 3,6 аминокислотных [c.70]

    В другой работе [1592] Полинг и Кори описали несколько измененную модель, в которой П-связи линейны, а повторяющиеся вдоль цепей расстояния равны 7,0 Л (антипараллельный слой) и 6,5 Л (параллельный слой). Другие важные интервалы для Р-кератина интерпретированы как расстояние между цепями (4,6 А) и расстояние между слоями (10 А). [c.269]

    Р-Поли-/-аланин [1211 также построен из складчатых слоев. Полинг и Кори 11599] предположили, что его структура является промежуточной между а- и -кератином, в которой каждый слой образует двойной ряд а-спиралей. Эта модель еще не проверена на опыте, но параметры, вычисленные на ее основе, имеют приемлемые значения. [c.271]

    Казалось бы, что полученные сведения не оставляют сомнения в том, что химотрипсин работает по такому же принципу. Однако выяснилось, что фермент-субст-ратный комплекс (сложный эфир + химотрипсин) представляет собой продукт взаимодействия сложноэфирной группы с гидроксильной группой остатка серина (0-ацил-серин). Далее оказалось, что в линейной цепочке аминокислот, которые входят в так называемый активный участок химотрипсина Гли.— Асп.— Сер.— Гли.— Про.— Лей., нет остатков гистидина по соседству с серином. Остается предположить, что активные центры химотрипсина — гидроксильная группа серина и имидазольное кольцо гистидина — хотя и удалены друг от друга (например, находятся на разных витках полипептидной цепи в модели Полинга — Кори), имеют возможность сближаться как раз в тот момент, когда происходит захват молекулы сложного эфира одним из активных центров химотрипсина. [c.101]

    Из двух писем, пришедших на той же неделе из Пасадены, мы узнали, что Полинг все еще не нащупал верного решения. Первое письмо было от Дельбрюка, который сообщал, что Лайнус только что сделал на семинаре доклад о своем новом уточнении структуры ДНК. Оказывается, рукопись, посланная им в Кембридж, была опубликована до того, как его сотрудник Р. Кори смог точно измерить межатомные промежутки, что было совсем непохоже на Полинга. Когда же измерения были произведены, они обнаружили несколько неприемлемых контактов, которые нельзя было устранить мелкими перемещениями. Таким образом, модель Полинга оказалась невозможной и по чисто стереохимическим соображениям. Однако он надеялся спасти положение с помощью изменений, предложенных его сотрудником Вернером Шомейкером. В пересмотренном варианте атомы фосфата были повернуты на 45°, благодаря чему водородную связь образовывала другая группа кислородных атомов. После доклада Лайнуса Дельбрюк сказал Шомейкеру, что не убежден в правоте Полинга, так как получил от меня письмо с сообщением, что у меня появилась новая идея о структуре ДНК. [c.121]

    Эмпирическое направление, рассмотрение которого было начато во втором томе настоящего издания, базируется на данных статистического анализа известных кристаллических структур белков, равновесной термодинамики, формальной кинетики и концепциях Полинга-Кори и Козмана, т.е. исходит из предположения об исключительной роли в сборке гетерогенной аминокислотной последовательности регулярных вторичных структур и представления о гидрофобных взаимодействиях как главной упаковочной силе. Считается, что по сравнению с множеством мыслимых нерегулярных локальных структур вторичные структуры являются самыми стабильными их возникновение, инициирующее процесс и обусловливающее дальнейшее его развитие, осуществляется с наибольшей скоростью. Благодаря гидрофобным взаимодействиям вторичные структуры образуют супервторичные, т.е. полярные остатки стремятся расположиться на внешней оболочке глобулы, а неполярные - в ее интерьере. Идеальная модель трехмерной структуры белка, согласно эмпирическому подходу, должна представлять собой ансамбль вторичных и супервто-ричных структур и иметь гидрофобное ядро, экранированное от водной среды гидрофильной оболочкой. Процесс создания такой модели из статистического клубка должен быть равновесным фазовым переходом первого рода, подчиняющимся классической термодинамике, статистической физике и формальной кинетике так же, как им подчиняются процессы кристаллизации малых молекул и образования линейных спиральных сегментов гомополипептидов. [c.6]

    В 1951 г. Полинг, Кори и Бренсон [1601] добились выдающегося успеха, предложив для а-белков модель спиралевидной молекулы с винтовой осью нецелочисленного порядка и сделав определенные предположения о строении спирали. Рассмотрим эти результаты раздельно, поскольку они в достаточной степени независимы. [c.263]


    НЫМИ ПО ИК-дихроизму (чего нельзя сказать о модели Полинга и Кори), но в ней предполагается неплоское строение амидной группы. Рендалл, Фрейзер и Норт [1686] вкратце рассмотрели эти модели и добавили свою, имеющую некоторое сходство с моделью Эмброза и Эллиота. Хаггинс [984] предложил еще одну конфигурацию — одиночную нить с малым шагом спирали, содержащей 30 остатков на трех витках. Окончательно этот вопрос еще не решен, и публикации на эту тему продолжают появляться 11712, 449]. [c.273]

    Изучение структуры пептидов привело к расшифровке Полингом, Кори и Брэнсоном в 1950 г. структурного элемента керотина (одного из белков, входящих в состав волос). Примененный ими метод заключался в подборе молекулярной модели, которая могла бы отвечать соответствующей рентгенограмме. Эта модель —< альфа-спираль послужила Уотсону и Крику одной из основных предпосылок для расшифровки структуры дезоксирибонуклеиновой кислоты (ДНК), представляющей две спирали, идушре в противоположном направлении и закрученные одна вокруг другой. Второй из предпосылок для решения проблемы строения ДНК было чисто техническое усовершенствование, позволившее повысить качество рентгенографии. (Оказывается, расшифровка структуры ДНК может служить сюжетом увлекательной повести [83].) В 1960 г. Кендрю и сотрудники сообщили о получении трехмерной картины распределения электронной плотности в миоглобине, что позволило построить молекулярную модель этого белка. Вскоре была расшифрована структура другого белка — гемоглобина (Перутц и сотр., 1962), а в 1964 г. структура третьего белка —< лизоцима. Лизоцим —< это первый фермент, структуру которого удалось определить. [c.247]

    Эта модель удовлетворяет всем условиям, характеризующим устойчивую форму, за тем лишь исключением, что в ней водородная связь >N—Н-- 0=С< отклоняется от прямолинейности приблизительно на 25° (VII, а—25°). Однако направление водородной связи таково, что оно частично захватывает орбиту неподеленной пары кислородного атома. Можно, следовательно, предполагать, что и эта форма достаточно устойчива, хотя и не в такой степени, как спиральная форма Полинга, Кори и Брэнсона. [c.314]

    Первое краткое сообщение о результатах исследования Полингом и Кори пространственной структуры полипептидов и белков появилось в ноябре 1950 г. [57]. В апреле следующего года в одном номере журнала было опубликовано сразу восемь работ Полинга и Кори с подробным изложением полученных результатов, а вскоре появились еще четыре их работы [58—65]. Они сразу же обратили на себя внимание научной общественности, вызвали огромный резонанс и оказали сильное влияние на последующее развитие молекулярной биологии и прежде всего исследований пространственной структуры пептидов и белков. В связи с чем вполне обоснованно разделить исследования, проводимые в этой области, на работы до 1951 г. и последующего периода. Читая какой-либо труд, посвященный структуре пептидов, можно, не зная даты публикации, почти наверняка определить, написан ли он до или после появления в печати работ этих ученых. Исследования Полинга и Кори (1951 г.) имеют теоретический характер. Сделанные авторами предсказания возможных структур полипептидной цепи основаны на следующих постулатах 1) приняты одинаковые значения для длин связей и валентных углов всех пептидных групп полипептидной цепи. В литературе они получили название геометрических параметров Полинга— Кори 2) пептидная группа считалась плоской. Возможны две плоские конфигурации группы, отличающиеся взаимным расположением связей N—Н и С=0, цис- и трамс-переход между ними связан с преодолением высокого потенциального барьера (-20 ккал/моль). При построении моделей Полинг и Кори отдали предпочтение транс-конфигурации пептидной группы. По оценке Р. Кори и Дж. Донахью, отклонение от плоского строения группы на 10° вызывает повышение энергии приблизительно на 1,5, а на 30° — на 6 ккал/моль [66] 3) предполагалась полная насыщенность полипептидной цепи водородными связями. Для водородной связи N—Н...О = С были приняты следующие геометрические и энергетические оценки расстояние N...0 считалось равным 2,8 А, максимальное отклонение от линейности N—Н...0 не должно превышать 30° и энергия связи — 8,0 ккал/моль 4) при построении моделей пептидной цепи выбирались наиболее благоприятные ориентации пептидных групп, разделенных атомом С , с учетом потенциалов внутреннего вращения вокруг связей С —N и С —С и ван-дер-ваальсовых контактов между атомами 5) конформационные состояния всех звеньев пептидной цепи считались эквивалентными. [c.21]

    Вопрос, на который теория Полинга—Кори не давала ответа, заключался в том, каково должно быть направление вращения спирали. Для рассмотренной модели кажется безразлично, выбрать ли правые или левые спирали. Одпако, если учесть левую конфигурацию природных аминокислот и наличие в них боковых групп, то станет яспо, что выбор нанравленпя вращения спирали небезразличен. Дело в том, что боковые радикалы К, которые всегда расположены вне спирали Полинга—Кори, будут располагаться вдоль оси в направлении, обратном направлению полп-пептидной цепи, если все аминокислоты 1-конфигурацни. а спираль правая (рис. 8). Направление цепи мы условно выбираем от К-конца к С-концу. С другой стороны, если из природных аминокислот построить левую спираль, то боковые группы аминокислот будут направлены вдоль осп по направлению полипептидной цепи. Так как спираль сложна и содержит 3,6 боковых групп на виток, то упаковка боковых радикалов и их взаимодействие будут различными в обеих структурах. Ясно, что выбор между правым и левым направлением спирали определяется как раз этим ваидерваальсовым взаимодействием боковых групп. [c.45]

    ЛипдерштрСм-Ланг предложил пространственную модель инсулина, а Шерага — структуру рибонуклеазы. Обе модели содержат как основной элемент отрезки спиралей Полинга—Кори. Линдерштрём-Ланг предположил, что пз двух пептидных цепей инсулина цепь А образует левые спирали, а цепь В — правые. [c.71]

    Картина, полученная при разрешении в 6 А, не позволила видеть положение отдельных атомов, но положение спиралей Полинга—Кори, образованных полинентидной цепью, получилось четко, так как диаметр спирали 10,1 А. Вся эта структура видна пз помещенной выше модели (см. рис. 34). На модели виден плоский диск — геминовая группа. Внутреннее строение спирали Полинга—Кори в этой картине, естественно, пе получилось. Видно, только, что полипептидная цепь свернута в стержень. Далее боковые цепи аминокислотных звеньев здесь получились как бесструктурная аморфная масса, заполняющая промежутки между стержнеобразной спиралью. По причине того, что отдельные белковые группы идентифицировать не удается, о чередовании аминокислот в цепи ничего еще сказать нельзя. Модель, представленная на рис. 34, сделана для простоты вообще без боковых групп. В модели видны цилиндрические весьма регулярные участки, перемежающиеся с ненравильными участками. Это подтверждает гипотезу о построении макромолекул белка из нескольких отрезков спирали Полинга—Кори с промежуточными неупорядоченными аморфными областями полипептидной цепи. [c.107]

    Под конформацпоннымн превращениями в макромолекулах до самого недавнего времени понимали превращения (переходы) спираль — клубок в полипептидах и нуклеиновых кислотах. Предполагалось, что, в отличие от макромолекул нативных белков, нуклеиновых кислот и их синтетических моделей — полипептидов и полинуклеотидов, где внутримолекулярные взаимодействия (в основном, водородные связи) обеспечивают наличие вторичной структуры, внутримолекулярные силы у обычных синтетических поли.меров недостаточны для поддержания уиорядоченности в цепи. Макро.молекулы первых существуют в растворах в конформации одионитевых (белки, полипептиды) или двунитевых (нуклеиновые кислоты, полинуклеотиды) спиралей (см. [251, 510]). Двойная спираль Крика — Уотсона [511] для дезоксирибонуклеиновой кислоты и а-сиираль Полинга — Кори [512] для полипептидов — наиболее известные примеры вторичной молекулярной структуры. Макромолекула в спиральной конформации подобна по своей структуре одномерному кристаллу. Изменением температуры или других условий (состав смешанного растворителя, pH растворителя — [c.252]

    Результаты работ Котельчука и Шераги соответствовали модели Полинга и Кори и, очевидно, в связи с этим не были критически восприняты многими исследователями, что способствовало распространению упрощенного представления о формировании структуры белковой молекулы. Однако данная работа содержит ряд серьезных недостатков и необоснованных заключений. Неудачен сам выбор расчетной модели, исследование которой в принципе не могло дать ответ на вопрос о взаимодействии смежных остатков при трех канонических формах основной цепи. Так, в случае -структурных параметров ф, ф боковые цепи Rj и R2 находятся по разные стороны от основной цепи, причем одна направлена вверх от средней плоскости складчатого листа, а другая - вниз, в результате боковые цепи ни при каких конформационных состояниях Rj и R2 не могут эффективно взаимодействовать между собой. В -структуре сближенными оказываются боковые цепи не смежных остатков, а разделенные одним остатком, т.е. Rj и R3, R2 и R4, взаимодействие между которыми может стабилизировать эту структуру. Следовательно, выбранная модель не отражает специфику взаимодействий боковых цепей в конформации складчатого листа. [c.247]

    В нач. 50-х гг. была выдвинута идея о трех уровнях организации белковых молекул (К. У. Линдерстрём-Ланг, 1952)-первичной, вторичной и третичной структурах. Определены первичные структуры инсулина (Ф. Сенгер, 1953) и рибонуклеазы (К. Анфинсен, С. Мур, К. Хёрс, У. Стайн, 1960). По данным рентгеноструктурного анализа были построены трехмерные модели миоглобина (Дж. Кендрю, 1958) и гемоглобина (М. Перуц, 1958) и, т. обр,, доказано существование в Б, вторичной и третичной структур, в т. ч. а-спирали, предсказанной Л. Полингом и Р, Кори в 1949-51. [c.248]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

    Прогресс, достигнутый в ходе решения столь сложный проблемы, был, естественно, результатом усилий многих исследователей. Среди них — Лайнус Полинг (Калифорнийский технологический институт), получивший в 1954 г. Нобелевскую премию. В 1951 г. Полинг писал Четырнадцать лет назад профессор Р. Кори в я, предприняв очень энергичные, но безуспешные попытки решить задачу построения удовлетворительной модели конфигурации полипептидных цепей в белках, решили попытаться справиться с этой задачей косвенным методом, тщательно изучив кристаллы аминокислот, простых пептидов и родственных соединений для того, чтобы получить абсолютно надежные и подробные сведения о структурных характеристиках веществ подобного рода и в конце концов получить возможность уверенного предсказания точных конфигураций полипептидных цепей в белках [Re ord. hem. Prog., 12, 156—157 (1951)]. Эта работа на простых веществах, проводившаяся в течение более 14 лет, позволила в конце концов Полингу с сотрудниками предложить структуру, которая, вероятно, является важнейшей вторичной структурой в химии белков — а-спираль. [c.1057]

    Ранее были описаны структуры комплексов краун-эфиров с NH , органическими ионными соединениями, такими, как соли первичных аминов, соли диазония и гуанидиния, а также с полярными органическими соединениями, как, например, ацетонитрил и нитросоединения. Сведения о кристаллических структурах этих комплексов, установленных рентгеноструктурным анализом или другими методами, пока отсутствуют. Крам и сотр. [ 30 - 32], проводя исследования в области химии "гость - хозяин", изучали конформацию комплексов краун-эфиров с органическими ионными соединениями с помощью модели Кори - Полинга - Колтона. Эти исследования описаны в гл. 5. [c.122]

    Следует < тметить, что Крам и сотрудники показали возможность оценки относительной стабильности диастереомерного комплекса, образованного хиральным "хозяином" и хиральным "гостем", используя молекулярную модель Кори - Полинга - Колтона. [c.283]


Смотреть страницы где упоминается термин Модель Полинга и Кори: [c.325]    [c.318]    [c.319]    [c.111]    [c.314]    [c.319]    [c.322]    [c.498]    [c.118]    [c.537]    [c.498]    [c.67]    [c.104]    [c.107]    [c.132]    [c.142]    [c.268]    [c.269]   
Проблема белка (1996) -- [ c.21 , c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Кора

Корей

Модели полипептидов Полинга и Кори

Полинг



© 2025 chem21.info Реклама на сайте