Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновское рассеяние и нейтронное рассеяние

    Согласно рис. 11.3, в том интервале 7 , где на рентгеновской кривой распределения находится первый максимум, на кривой, полученной по нейтронным данным, имеется отрицательный пик. Связано это с тем, что изотоп Ы характеризуется отрицательной амплитудой ядерного рассеяния нейтронов, в то время как атомные амплитуды рассеяния рентгеновских лучей всегда положительны. Следовательно, отрицательный пик на кривой распределения при Я—2,45 А соответствует расстоянию Ы — С и является результатом сочетания отрицательной амплитуды рассеяния для Ы и положительной амплитуды для С1". Наличие последующих максимумов на кривых распределения указывает на существование тенденции к чередованию ионов противоположного заряда. В табл. 32 приведены параметры первой и второй координации некоторых галогенидов щелочных металлов. [c.269]


    Разборка рибосомных частиц происходит при их инкубации в условиях повышенной ионной силы и высокой концентрации Вначале процесс сводится лишь к диссоциации рибосомных белков в порядке, обратном наблюдаемому при сборке. Исследования пространственной структуры малой частицы рибосомной РНК с различным содержанием белков методами электронной микроскопии и малоуглового рентгеновского и нейтронного рассеяния убеждают в том, что всего шесть белков из 21, а именно те, которые первыми присоединяются к 16S РНК при сборке, удерживают плотность упаковки и форму полинуклеотидной цепи, свойственные функ- [c.54]

    Предлагаемых моделей. Например, можно теоретически рассчитать кривые рассеяния, которые давали бы частицы, соответствующие модели, Йри различном рассеивающем вкладе белка и РНК Размеры и форму РНК в модели можно проверять, сравнивая теоретически рассчитанную кривую при нулевом вкладе белка с экспериментальной кривой нейтронного рассеяния в 42%-НОМ ОаО, когда рассеяние от белка скомпенсировано растворителем. С другой стороны, характер взаиморасположения белков в модели можно тестировать путем сравнения рассчитанной из модели кривой при нулевом вкладе РНК с экспериментальной кривой нейтрон-його рассеяния в 70%-ном ОаО (точка компенсации рассеяния РНК растворителем). Наконец, задавая различные вклады белка и РНК при расчетах рассеяния от модели, можно получить набор теоретических кривых для сравнения с экспериментальными кривыми нейтронного рассеяния в НЮ, ОаО й при различных их соотношениях, а также с кривыми рентгеновского рассеяния этим путем проверяется взаимное расположение белка и РНК в модели. Если соответствия между рассчитанными и экспериментальными кривыми не будет, модель должна быть отвергнута. Модель расположения РНК и белков в 308 субчастице. Изображенная на рис. 72, не противоречит экспериментальным кривым нейтронного и рентгеновского рассеяния вплоть до разрешения около 4—5 нм. [c.117]

    Наличие в жидкости частично пространственно-упорядоченного расположения частиц подтверждается экспериментальными данными, в частности экспериментами по рассеянию света, рентгеновского излучения, нейтронов и электронов. Как было показано В. И. Даниловым, рентгенограммы жидкости вблизи температуры кристаллизации обнаруживают определенное сходство с рентгенограммами кристаллов, отличаясь от них размытостью и меньшим значением дифракционных максимумов (рис. 28). Рассеяние рентгеновского излучения жидкостями и твердыми телами отлично от рассеяния их газами. Для газов характерно значительное рассеяние под малыми углами 0 и постепенное ослабление по мере увеличения 0, а для жидкостей, наоборот, характерно отсутствие рассеяния под малыми углами. [c.107]


    Основным результатом экспериментов по малоугловому рентгеновскому и нейтронному рассеянию является обнаружение более чем двух фаз в образце. Максимальный интерес представляют следующие три момента резкое возрастание кривой рассеяния при низких значениях <7 пик, появляющийся при значениях q, равных нескольким сотням ангстрем (период Брэгга) еще один пик при больших углах, который наблюдается как для рассеянного пучка нейтронов, так и для рентгеновского излучения. Положение и высота этих пиков зависят от количества абсорбированной воды. [c.455]

    Метод малоуглового рентгеновского рассеяния и рассеяния нейтронов основан на анализе распределения интенсивности рассеяния исследуемым раствором и дает информацию об общей форме и объеме макромолекул в растворе. [c.14]

    Экспериментальные методы, применяемые для определения и характеристики структуры полимерных цепей и их совокупностей, упоминались в общем обзоре гл. 1. Дополнительную информацию по дифракции рентгеновских лучей [3], рассеянию нейтронов [4—6], электронов и света [4, 52, 53], оптической и электронной микроскопии [3, 14Ь], термическим [3, 54] и вязкоупругим свойствам [14с, 55—57] и методу ядерного магнитного резонанса (ЯМР) [3] можно получить из источников, указанных в списке литературы к данной главе. В гл. 5 и 6 соответственно будут рассмотрены методы инфракрасного поглощения (ИКС) и ЭПР. [c.35]

    В отличие от рентгеновских и электронных амплитуд, которые можно рассчитать и которые монотонно растут с увеличением порядкового номера 2 атома, ядерные амплитуды рассеяния нерегулярно меняются в зависимости от массового числа М и не могут быть теоретически вычислены по ряду причин. Значения ст приходится определять из опытов по рассеянию нейтронов веществом. [c.79]

    Наличие в жидкости пространственного упорядочения молекул подтверждается и многими другими фактами, в частности экспериментальными данными по рассеянию света, дифракции рентгеновского излучения, нейтронов и электронов. Дебаеграммы жидкостей, изученных при температурах, близких к температурам кристаллизации, сходны с рентгенограммами кристаллов, [c.166]

    Наличие в жидкости пространственного упорядочения молекул подтверждается и многими другим фактами, в частности экспериментами по рассеянию света и рентгеновского излучения, нейтронов и электронов. [c.277]

    Рентгенографические, электронографические и нейтронографические исследования атомной и молекулярной структур жидкостей и аморфных тел основываются на анализе углового распределения интенсивности рассеянного рентгеновского излучения, электронов и нейтронов. Рассеяние веществом этих трех видов излучений не одинаково, что объясняется различием их физической природы. Рентгеновское излучение рассеивается электронами атомов и молекул. Процесс рассеяния не характерен обычному отражению или преломлению. Рентгеновское излучение, взаимодействуя с электронами, приводит их в колебательное движение. Колеблясь с той же частотой, что и электрический вектор первичной электромагнитной волны, электроны порождают вторичное электромагнитное излучение, распространяющееся во всех направлениях. Интенсивность рассеянного излучения, фиксируемая в некоторой точке, пропорциональна электронной плотности атомов и молекул. [c.26]

    Из-за отсутствия у нейтронов электрического заряда их рассеяние иное, чем у рентгеновского излучения и электронов. Процесс рассеяния нейтронов не зависит от заряда ядер, а определяется их составом и спином. [c.37]

    Общая форма зависимости и г), представленная на рис. 40, а, наблюдается для молекул разного типа (правда, в большинстве случаев требуется еще учитывать зависимость потенциала и от угловых координат). Точное определение функции и (г) для данной пары молекул, однако, — задача чрезвычайной трудности. Экспериментальными источниками информации о количественных характеристиках межмолекулярных взаимодействий служат измерения различных свойств (зависимость р — V — Т для газов, вязкость газов, энергия кристаллической решетки, рассеяние рентгеновских лучей, нейтронов и молекуляр- [c.271]

    Нейтронография. Она изучает строение молекул, кристаллов и жидкостей по рассеянию нейтронов в веществе. Чаше всего нейтронография используется как метод уточнения или получения дополнительной информации о структурах, уже исследованных методом РСА. При этом используются некоторые преимущества нейтронографии по сравнению с РСА возможность определения положения легких атомов (особенно водорода) в присутствии тяжелых, а также возможность исследования структур, содержащих атомы элементов с близкими значениями порядкового номера 2, почти не различимых РСА. Рассеяние рентгеновского излучения — это результат колебания электронов атомов под воздействием рентгеновских квантов. Нейтроны же проникают через электронную структуру атомов и молекул и взаимодействуют с атомными ядрами. Поэтому нейтроны рассеиваются более равномерно всеми атомами образца. Рентгеновское же излучение рассеивается в большей степени тяжелыми атомами, которые богаче электронами. Поэтому рентгеновское излучение почти не реагирует на положение легких атомов, особенно водорода в структуре исследуемого вещества. [c.197]


    Наличие в жидкости пространственного упорядочения молекул подтверждается экспериментальными данными по рассеянию света, дифракции рентгеновского излучения, нейтронов и электронов. Рентгеноструктурные исследования показали, что в жидкостях, состоящих из многоатомных молекул, наблюдается не только упорядоченное расположение молекул, но и известная закономерность во взаимной ориентации частиц. Эта ориентация усиливается для полярных молекул я при формировании водородной связи. Однако, как видно на рис, 21, только в окрестности данной частицы наблюдается закономерное расположение соседних частиц. При удалении от рассматриваемой частицы А на расстояние порядка 10 атомных расстояний закономерное расположение частиц нарушается. [c.35]

    Радиальная функция распределения атомов простых жидкостей может быть найдена по данным о рассеянии рентгеновских лучей, нейтронов или электронов [13—17]. Рентгеновские лучи рассеиваются главным образом электронами атомов нейтроны — преимущественно атомными ядрами, за исключением магнитных веществ, где рассеяние элект-тронами существенно. Электроны рассеиваются всеми частицами атома в целом. Различие в физической картине рассеяния ведет к некоторым отличиям в содержании получаемой информации [16]. Тем не менее методы обработки и анализа результатов эксперимента имеют много общего. В качестве примера дадим представление о расчетах радиальной функции распределения на основании сведений о рассеянии рентгеновских лучей. [c.115]

    Дисперсионные кривые для многих твердых тел, фононный спектр которых содержит акустические и оптические ветви, были найдены экспериментальным методом, основанным на когерентном рассеянии нейтронов и рентгеновских лучей [16]. [c.113]

    Строение внутр. оболочек А., электроны к-рых связаны гораздо прочнее (энергия связи 10 -10" эВ), проявляется лишь при взаимод. А. с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов, нейтронов) на А. (см. Дифракционные методы). Масса А. определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра А. зависят нек-рые тонкие физ. эффекты (ЯМР, ЯКР, сверхтонкая структура спектральных линий, см. Спектроскопия). [c.216]

    Рентгеновское и нейтронное рассеяние. Методы рентгепострук-турного и нейтроноструктурного анализа представляют собой дифракционные методы. Рентгеновские лучи — это электромагнитные волны большой энергии. Длины волн пх лежат в интервале от 0,05 до 0,20 нм. Нейтроны — незаряженные микрочастицы, обладаюплие массой покоя. Для пучков нейтронов соответствующие им длины волн лежат в пределах 0,1 —1,0 нм. Рентгеновское излучение рассеивается электронами атомов и молекул. Интенсивность рассеянного излучения фиксируется каким-либо способом и характеризует электронную плотность. Рассеяние рентгеновских лучей на ядрах оказывается пренебрежимо малым. В свою очередь, нейтроны рассеиваются ядрами атомов. При этом упругое рассеяние медленных нейтронов позволяет изучать атомную структуру вещества, а неупругое используется для изучения динамики частиц. Механизмы рассеяния рентгеновских лучей и нейтронов похожи. [c.101]

    Впервые этот принцип организации рибосомы был выведен И. Н. Сердюком и др. из экспериментов по измерению радиусов инерции (Rg) рибосомных субчастиц. Прежде всего, радиус инерции, измеренный методом диффузного малоуглового рассеяния рентгеновских лучей, оказался существенно меньше, чем можно было ожидать из размеров (объема) субчастицы, если бы она была однородно плотным телом. Отсюда следовал вывод, что электронно более плотный компонент частицы (РНК) локализуется преимущественно ближе к центру тяжести частицы, в то время как менее плотный компонент (белок) имеет тенденцию располагаться в среднем ближе к периферии. Далее, измерение радиусов инерции рибосомных субчастиц с помощью разных типов излучения (рентгеновские лучи, нейтроны, свет) показало, что чем больше вклад белкового компонента, по сравнению с РНК, в рассеяние (относительная рассеивающая доля белка растет в вышеуказанном ряду типов излучения), тем больше значение радиуса инерции частицы (рис. 62). Наконец, применение нейтронного рассеяния частиц в растворителях с разной рассеивающей способностью для нейтронов (разным соотношением НаО и DaO) позволило прямо измерить радиус инерции РНК и белкового компонента in situ в отдельности. Дело в том, что Н2О и D2O сильно различаются по рассеивающей способности для нейтронов, а рассеивающие способности биологических макромолекул занимают проме- [c.104]

    Отщепление большей части белков, по-видимому, не сопровождается йарушением общей третичной структуры и компактности рибосомной НК. Электронно-микроскопическое прослеживание за процессом раздевания 30S субчастицы Е. соИ показало, что удаление половины белков не приводит к сколько-нибудь значительным морфологическим изменениям частиц они сохраняют те же размеры, то же соотношение осей (2 1) и то же характерное подразделение на головку, тело и боковую лопасть. Более того, внешне такие же частицы видны и после удаления 15 из 21 белков. Проверка компактности рибосомной РНК в частицах с различным содержанием белков с помощью рентгеновского и нейтронного рассеяния подтверждает электронно-микроскопические наблюдения РНК, удерживающая всего 6 белков, таких как S4, S7, S8, S15, S16 и S17, сохраняет компактность и форму, свойственную ей в составе 30S субчастицы. [c.127]

    Существует относительно большое различие в спектральных характеристиках рентгеновского и нейтронного рассеяния на —Ор2-группах полимера и на молекулах воды. Различный характер рассеяния обусловлен разницей в электронных плотностях —Ср2— и НгО, что важно для рентгеновского рассеяния, и значительным расхождением длины когерентного рассеяния нейтронов на этих частицах. В табл. 28.2 представлены соответствующие характеристики полимерных групп и изотопных форм молекул воды в полимере. Следовательно, методы рассеяния нейтронов и рентгеновских лучей могут дать важную информацию о процессах кластерообразования в полимерах. Предварительные эксперименты подобного типа были уже проведены и описаны в литературе [6]. На рис. 28.4 показаны кривые нейтронного рассеяния, полученные для образцов с раз- [c.447]

    Для изучения кластерообразования ионов и молекул воды а нафионовых мембранах с противоионами N3+ использовался метод малоуглового рентгеновского рассеяния. Кривые рассеяния рентгеновских лучей на образцах с различным содержанием влаги представлены на рис. 29.8. Максимумы на этих кривых появляются только при высоком содержании воды, что, повидимому, обусловлено интерференцией рассеянного излучении из-за близко расположенных друг к другу центров рассеяния (кластеров). Соответствующие максимумы регистрируются также и методом малоуглового рассеяния нейтронов. [c.465]

    В заключение мы хотим предложить возможную модель структуры мембраны нафион, которая согласуется со всеми изложенными выше данными. Прежде всего следует отметить, что заметные расхождения в макроструктуре мембран кислой и солевой форм отсутствуют. Действительно, эксперименты по рентгеновскому и нейтронному рассеянию показали одинаковую неоднородность. Характер кривых рассеяния также аналогичен для кислых и основных образцов. Можно отметить лишь небольшое изменение размеров ионных кластеров для ионов раз- [c.467]

    Установление подобных структур проводилось методами малоуглового рентгеновского и нейтронного рассеяния в диапазоне изменений волнового вектора 0,01 -Ь 0,1 А. Были определены удивительно стабильные агрегаты (рис. 12.1), объем и форма которых не зависели от концентрации фуллеренов и от межафегатного взаимодействия. [c.367]

    Мы рассмотрим здесь более или менее детально лишь классическое упругое рассеяние света. Метод светорассеяния является близкой аналогией рентгеновского и нейтронного рассеяния в растворе. Образец освещают коллимированным пучком света с длиной волны X, и измеряют интенсивность рассеянного излучения с той же длиной волны как функцию 70 — угла между падаюпщм пучком и направлением, в котором помешен детектор. [c.445]

    Так, в работах /123, 124/ на основе данных электронной и /125/ рентгеновской дифракции бып сделан вывод, что для структуры углеводородных цепей в жидкой фазе характерна высокая упорядоченность. Упорядочшные области, образованные параллельными участками цепей в транс-конформациях, могут в случае н-алканов и полиэтилена простираться на расстояния 10 нм и занимать до 60% объема расплава. Однако последующие исследования функций радиального распределения, полученных методами электронографии и рентгенографии /125/, поставили под сомнение выводы авторов /123, 124/ и выявили лишь локальную упорядоченность в располож ии участков молекул, по сути дела ничем не отличающуюся от ближнего порядка в структуре простых низкомолекулярных жидкостей. Аналогичные выводы получены методами ИК-спектроскопии /106/ и методом малоуглового рассеяния нейтронов /107/. [c.159]

    В работе [36] французские ученые провели сершо экспериментов с исследованием растворов асфальтенов при помощи малоуглового рентгеновского (МУРР) рассеяния и малоуглового нейтронного рассеяния (МУНР). Системный анализ данных рассеяния показал, что асфальтено-вые агрегаты - не твердые объекты (диски или сферы). Скорее, они проницаемы и являются фрактачьными коллоидными обьектат. [c.39]

    В нейтронографичсском анализе для исследования веществ используются монохроматические пучки медленных нейтронов. Специфика использования нейтронографии для структур1 ых и других исследований веществ обусловлена следующими особенностями рассеяния нейтронов в кристаллической решетке по сравнению с рентгеновскими лучами нейтроны рассеиваются ядрами атомов, а рентгеновские лучи в основном электронами рассеяние нейтронов не зависит от угла (направления) падения пучка, тогда как рассеяние рентгеновских лучей от него зависит амплитуда рассеяния нейтронов не монотонно зависит от атомного номера элемента, а в случяе рентгеновских лучей функция атомного рассеяния растет с ростом атомного номера нейтроны обладают магнитным моментом нейтроны глубоко проникают в массу исследуемого образца и слабо поглощаются веществом. [c.106]

    Так как скорость фотона с 10 м/с, а скорость нейтрона = —УЗкТ/т 10 м/с, то время прохождения ими расстояния порядка 10 1 м составляет 10"1 с для фотона и 10" с для нейтрона. Следовательно, энергия рентгеновских фотонов почти в 10 раз больше, чем энергия нейтронов при той же длине волны. Во столько же раз меньше продолжительность взаимодействия фотона с атомом. Поэтому для рентгеновского излучения неулругое рассеяние атомов не играет роли, для нейтронов же оно составляет значительную часть общего рассеяния, что усложняет методику дифракционного эксперимента. Вместе с тем слабое поглощение нейтронов позволяет получать дифрак-тограммы от жидких металлов, сильно поглощающих рентгеновское излучение. Применение к жидкостям электронов сопряжено с рядом трудноустранимых побочных эффектов. Электроны являются удобным средством изучения строения молекул газов, структуры кристаллических и аморфных тел. [c.41]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    Т, к. интепсинпость рассеяния нейтронов не зависит систематически от порядкового номера элемента, структурная Н. дает возможность надежнее и точнее, чем рентгеновский структурный аиализ, определить координаты атома водорода и др, легких элементов в присут. тяжелых элементов и различить атомы с близкими атомными номерами (напр., Fe, Со и Ni в сплавах) или изотопы одного цемента. Магнитная Н. позволяет установить наличие и тип магн, структуры (т. е. упорядоченную ориентацию магн. моментов относит, друг друга и кристаллографич. осей), величину магн. момента атома, т-ру и характер магн. переходов, раст рсделение спиновой плотности и т. д. [c.371]

    Было отмечено, что только метод нейтронного рассеяния может дать пря- yю информацию по этому вопросу, хотя трактовка данных не является однозначной. Эта диск ссия продолжалась и далее. На основании результатов рентгеновского рассеяния утверждается [189], что имеется некоторый уровень упаковочной регулярности и в алшрфных полимерах. [c.334]

    К третьей группе методов Д. а. относятся, во-первых, все методы седиментационного анализа. Эти методы основаны, напр., на регистрации кинетики накопления массы осадка (седиментометр Фигуровского позволяет определять размеры частиц от 1 до 500 мкм) или изменения оптич. плотности суспензии. Применение центрифуг позволяет снизить предел измерения до 0,1 мкм (с помощью ультрацентрифуг можно измерять даже размеры крупных молекул, т.е. 1-100 нм). Во-вторых, широко используют разнообразные методы рассеяния малыми частицами света (см. Нефелометрия и турбидиметрия), в т. ч. методы неупругого рассеяния, а также рассеяния рентгеновских лучей, нейтронов и т.п. В-третьих, для определения уд. пов-сти применяют адсорбц. методы, в к-рых измеряют кол-во ад-сорбир. в-ва в мономолекулярном слое. Наиб, распростраиен метод низкотемпературной газовой адсорбции с азотом в качестве адсорбата (реже аргоном или криптоном). Уд. пов-сть высокодисперсной твердой фазы часто определяют методом адсорбции из р-ра. Адсорбатом при этом служат красители, ПАВ или др. в-ва, малые изменения концентрации к-рых легко определяются с достаточно высокой точностью. [c.78]

    Эксперим. исследование мол. движений проводят с помощью ЯМР, ЭПР, оптич. спектроскопии (люминесцентной, ИК, комбинац. рассеяния), методов диэлектрич. и мех. релаксаций, рассеяния нейтронов, рентгеновских лучей и др. для интерпретации результатов привлекают модельные представления о мол. структуре изучаемого объекта и даша-мике молекул. Из теоретич. методов в первую очередь используют моделирование мол. структур на ЭВМ-численные эксперименты (часто иаз. также машинными или вычислительными экспериментами). Такое моделирование основано на определенных физ. гипотезах относительно характера движения частиц в системе, их взаимод. и т. п. оно позволяет провести детальный анализ динамич. св-в разл. мол. систем, зависимость этих св-в от г-ры и др. термодинамич. параметров и влияния динамики молекул на макроскопич. св-ва в-ва. Одно, пз существ, достоинств численных экспериментов - возможность проверить исходные физ. гипотезы и вычислит, методики, оставаясь в рамках самих этих экспериментов. Совр. ЭВМ позволяют проводить численные эксперименты для систем с относительно небольшим числом N частиц (как правило, N = 10 -10 ). Поэтому для моделирования изотропных макроскопич. систем часто полагают, что все пространство заполнено тождеств, ячейками с периодич, граничными условиями (напр., кубич. ячейками, когда считаются тождественными противополохсные грани).,  [c.111]

    Фазовые переходы М. к.-плавление, возгонка, полиморфные переходы (см. Полиморфизм)-ироясхоаят, как правило, без разрушения отдельных молекул. М. к. являются частным случаем ван-дер-ваальсовых кристаллов, к к-рым относятся также цепочечные и слоистые кристаллы, где посредством ван-дер-ваальсовых сил соединены бесконечные цепи (напр., орг. полимеры) или слои (напр., графит). Структуру М. к., как и др. кристаллич. в-в, устанавливают с помощью рентгеновского структурного анализа, для изучения динамики молекул в М. к. используют колебат. спектроскопию и неупругое рассеяние нейтронов. [c.117]


Библиография для Рентгеновское рассеяние и нейтронное рассеяние: [c.222]   
Смотреть страницы где упоминается термин Рентгеновское рассеяние и нейтронное рассеяние: [c.25]    [c.18]    [c.443]    [c.85]    [c.25]    [c.188]    [c.27]    [c.82]    [c.107]    [c.41]    [c.282]    [c.283]    [c.186]   
Биофизическая химия Т.2 (1984) -- [ c.437 , c.439 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон

Нейтронное рассеяние



© 2025 chem21.info Реклама на сайте