Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трубчатые печи реакционные

    Результаты обследования 22 крупных агрегатов аммиака показали, что 55% остановок вызваны аварийными ситуациями на трубчатых печах и шахтных реакторах второй ступени. Наиболее слабыми местами в трубчатых печах являются реакционные трубы, разрыв которых вызывается главным образом местными перегревами. [c.16]


    К числу недостатков указанных трубчатых печей относится малая скорость передачи тепла к перерабатываемому сырью, поэтому необходимо увеличивать время пребывания сырья в реакционном пространстве. Недостатком их, как уже указывалось выше, является также необходимость периодических остановок их для прожига труб от кокса и необходимость введения больших количеств пара для снижения коксообразования. [c.45]

    Основные аппараты установки термического крекинга — трубчатые печи, реакционные камеры, испарители и ректификационные колонны. [c.189]

    Практически термический крекинг осуществляется следующим образом подлежащий крекингу исходный материал поступает в трубчатую печь, стальные трубы которой нагреваются непосредственно пламенем сжигаемого в форсунках жидкого топлива, в печи продукт нагревается до необходимой для крекинга температуры, приблизительно до 500—600° [3]. После нагрева до указанной температуры продукт пз печи поступает в реакционную камеру, где он остается некоторое время, необходимое для реакции крекинга, при той же температуре. Далее продукт поступает в испаритель, где в большей части испаряется, а легко коксующийся остаток удаляется из низаисна-рнтеля (крекинг-мазут). В современных установках (рис. 14) крекинг полностью протекает уже в трубчатой печи, что делает реакционную камеру излишней. В этих установках продукт из трубчатой печи поступает непосредственно в испаритель. Отделившийся в нем остаток в количестве, примерно равном количеству крекинг-бензина, применяется как котельное топливо. Испаренные в испарителе продукты крекинга направляются в ректификационную колонну, работающую при том же давлении, что и испаритель. Там они разделяются на газ, крекинг-бензин и высококипящую часть. Последняя возвращается на крекинг (рециркулят). Этот вид термического крекинга определяется как крекинг-процесс с работой на жидкий остаток. В этом процессе кокса образуется очень немного и возможен длительный, безостановочный пробег установки. После примерно трехмесячного пробега установки требуются ее остановка и очистка от кокса трубчатой печи и других элементов. [c.39]

    Трубчатые печи (рис. 75) предназначены для обогрева реакционных трубок при некоторых испытаниях. Они представляют собой керамическую трубу, на которую намотана спираль накала, заключенную в другую керамическую трубу. Между этой трубой и металлическим кожухом находится термоизоляционный мате- [c.50]


    Смолистые вещества склонны к коксообразованию кокс отлагается практически во всех аппаратах, связанных с высокотемпературным нагревом. Особенно много кокса отлагается в трубчатых печах, реакционных устройствах и теплообменниках. В результате ухудшаются условия и сокращается длительность работы промышленных установок. При каталитической переработке смолистые вещества в виде, кокса отлагаются на катализаторе, снижая его активность и увеличивая расход. [c.5]

    В трубчатой печи (реакционной зоне) в присутствии водяного пара на никелевом катализаторе происходит конверсия углеводородов природного газа, в результате образуется Нг, СО и СО2. При этом температура достигает 820° С. Далее конвертированный газ по выходному коллектору поступает в конвертор 6 метана II ступени, где также на никелевом катализаторе при температуре 1000° С происходит конверсия остаточного метана с паром и кислородом воздуха, в результате которой содержание метана в газе снижается до 0,35%. [c.9]

    Процесс проводился в кварцевой трубке диаметром 20 мм и длиной 920 мм трубка снабжена капельной воронкой. Нагревание велось в электрической трубчатой печи. Реакционная трубка имела две зоны обогрева длина первой зоны 400 мм, второй 520 мм. Первая реакционная зона заполнялась катализатором, [c.205]

    Название "замедленное" в рассматриваемом процессе коксования связано с особыми условиями работы реакционных змеевиков трубчатых печей и реакторов (камер) коксования. Сырье необходимо предварительно нагреть в печи до высокой температуры (470 — 510 °С), а затем подать в необогреваемые, изолированные снаружи коксовые камеры, где коксование происходит за счет тепла, прихо — дящего с сырьем. [c.55]

    Большое влияние иа степень превращения сырья в трубчатых печах оказывает конструкция реакционного змеевика, распределение температурного градиента по длине змеевика и скорость газового потока. Для создания паиболее благоприятных условий протекания реакцин пиролиза температуру по длине змеевика постепенно повышают, а для достижения высоких коэффициентов теплопередачи в змеевиках поддерживают высокие скорости газовых потоков. За рубежом в промышленных условиях для змеевиков обычно применяют трубы диаметром 106 мм. Давление на выходе из змеевика поддерживается от 1,5 до 2,0 ати. [c.44]

    В реакционных трубах трубчатой печи установки синтеза аммиака фирмы Энса (Франция) произошла авария на стадии каталитической конверсии углеводородов природного газа. [c.16]

    Щелочная очистка масляных дистиллятов проводится при температурах 140—160 °С и при давлении 0,6—1,0 МПа во избежание испарения воды. Технологическая схема щелочной очистки масел приведена на рис. ХП1-6. Масляный дистиллят насосом 1 прокачивается через трубное пространство теплообменника 2, змеевики трубчатой печи 3 и с температурой 150—170 С подается в диафрагмовый смеситель 4. Туда же закачивается 1,2—2,5 %-ный раствор гидроксида натрия. Из смесителя реакционная смесь поступает в отстойник 5. Температура в отстойнике 130—140 °С, давление 0,6—1,0 МПа, длительность отстоя 3,5—4 ч. Щелочные отходы, выходящие с низа отстойника, охлаждаются в холодильнике 6 погружного типа до 60 °С и направляются в сборники для отделения нафтеновых кислот. Очищенный масляный дистиллят с верха отстойника 5 поступает в смеситель 7 на промывку водой. Температура подаваемой в смеситель химически очищенной воды 60—65 °С, Отделение промывной воды от дистиллята осуществляется в отстойнике 8. Выходящие с низа отстойника промывные воды охлаждаются в холодильнике 9 погружного типа и направляются в сборник для отделения нафтеновых кислот. Очищенный и промытый продукт с верха отстойника 8 проходит теплообменник 2, где, отдавая свое тепло сырью, охлаждается с 90 до 70 °С, и поступает в сушильную колонну 10 для удаления мельчайших капелек воды за счет продувки его горячим сжатым воздухом. Готовое масло с низа сушильной колонны откачивается в резервуары. [c.117]

    Кислоты из сырьевой емкости 6 насосом 8 и свежий водород компрессором 3 сжимаются до 300 ат и подаются в систему высокого давления. Смесь кислот и водорода проходит подогреватель 9, где нагревается за счет тепла отходящих продуктов гидрирования. Для окончательного подогрева до требуемой температуры смесь проходит трубчатую печь 10 и далее поступает в колонну гидрирования 11. Схемой предусматривается возможность раздельного нагрева кислот и водорода. В этом случае кислоты непосредственно направляются в колонну гидрирования, а циркуляционный водород нагревается в печи до более высокой температуры, обеспечивающей нагрев реакционной массы в колонне гидрирования до 230—240° С. При таком варианте подачи сырья снижается коррозия трубопроводов и нагревательных труб печи, что позволяет изготавливать их из менее качественных сталей. [c.181]


    Особенностью производства битумов в трубчатом реакторе является протекание стадии собственно окисления в режиме, близком к идеальному вытеснению (хотя в целом трубчатый реактор, работающий с рециркуляцией, соответствует более сложной модели и при значительных коэффициентах рециркуляции приближается по характеру структуры потоков жидкости к реактору идеального смешения). В этом случае для обеспечения приемлемой скорости реакции необходимо уже на вход в реактор подавать нагретые реагенты. В дальнейшем же во избежание перегрева реакционной смеси ее необходимо охлаждать. Таким образом, вначале требуются затраты энергии на нагрев сырья в трубчатой печи, а затем — на охлаждение реагирующих фаз потоком вентиляторного воздуха [72]. При использовании легкого сырья или при сравнительно глубоком окислении (до строительных битумов) нагрев сырья в трубчатой печи можно заменить нагревом в теплообменниках битум — сырье [54, 73]. Средняя температура в реакторе должна быть не ниже 265 °С, иначе реакция окисления резко замедляется [71]. [c.53]

    Широкое распространение в газовой промышленности получили также печи регенеративного типа. В них можно перерабатывать все виды углеводородного сырья. В отличие от трубчатых печей в печах регенеративного типа переработку можно вести с малыми временами пребывания сырья в реакционном пространстве. [c.46]

    Блоки как первой, так и второй ступени состоят из теплообменников, трубчатой печи, реакционных колонн, холодильников, сепараторов, жидкостных и циркуляционных насосов и т. д. Регулирование температуры в колоннах осуществляется так же, как это описано в разделе парофазнои гидрогенизации. Процесс в обеих ступенях проводится при 300 ат с циркуляцией газа, с непрерывной подачей свежего водорода. Колонны блока первой ступени загружаются сернистым вольфрамом, а второй ступени— расщепляющим катализатором (10% ШЗг — 90% природной активированной алюмосиликатной глины). [c.244]

    При проведении пиролиза в трубчатой печи, реакционная смесь нагревается ностепенио от температуры 200. .. 250°С до 500. .. 510 "С. В отсутствие инициатора процесс термического разложения ДХЭ [c.30]

    Исходный продукт нагревается до температуры реакции в трубчатой печи и отсюда поступает в реакционную печь, в 1<оторой имеется катализатор, Одповременно с исходным продук-  [c.103]

    Реакционные трубы трубчатых печей обычно изготовляют из нержавеющей стали ASTM А-297 (сорт НК, модифицированный). Внутренний диаметр труб составляет 150 мм, наружный 178 мм. Основная причина растрескивания труб — ползучесть металла, обусловленная неправильной обработкой их поверхностей. [c.18]

    Однородное смешение об оих реагирующих компонентов необходимо для того, чтобы по возможности предотвратить образование дихлорида в результате местного повышения концентрации хлора. После смешения газы поступают в трубчатую печь, в которой при температуре 260° реакция хлорирования завершается приблизительно за 2, 5 сек. Эта малая продолжительность пребывания реакционной смеси в печи обусловливает чрезвычайно высокую скорость подачи гаэов, что также благоприятствует более однородному смешению компонентов. [c.180]

    Так, на одном из предприятий перед пуском печи внешняя поверхность каждой реакционной трубы была подвергнута дробеструйной обработке внутренняя поверхность труб обработке не подвергалась. После трех с половиной лет эксплуатащш трубчатой печи на одной реакционной трубе были обнаружены три продольные трещины (одна длиной 75 мм и две длиной по 25 мм), через которые выбивались язычки пламени. [c.18]

    Полученная таким способом газовая смесь поступает в реакционную трубчатую печь, в которой происходит образование формальдегида (рис. 82). Газ, отдавший свое тепло в теплообменнике, отмывается водой от формальдегида и после того, как будет отобрана часть метана для обогрева печи, возвращается в процесс. Водный раствор формальдегида (5—10% СН2О) нейтрализуют, чтобы связать муравьиную кислоту, присутствующую в небольших количествах, и затем перегоняют под давлением. Получается 34%-ный раствор формальдегида, содержащий 3% метанола. Иэ 203,3 нм метана получают в час 26,4 кг 100%-ного формальдегида, т. е. 9, 7% от теоретического. Этот процесс был исследован затем и в США [18]. [c.439]

    Исходное сырье после нагрева в теплообменниках поступает в нижргюю секцию колонны К-3. Она разделена на 2 секции полуглухой тарелкой, которая позволяет перейти в верхнюю секцию только парам. Продукты конденсации паров крекинга в верхней секции нака1гливаются в аккумуляторе (кармане) внутри колонны. Потоки тяжелого и легкого сырья, отбираемые соответственно с низа и из аккумулятора К-3, подаются в змеевики трубчатых печей П-1 и П-2, где нагреваются до температуры соответственно 500 и 550 °С и далее поступают для углубления крекинга в выносную реакционную камеру К-1. Продукты крекинга затем направляются в испаритель высокого давления К-2. Крекинг-остаток и термогазойль через редукционный клапан поступают в испаритель низкого давления К-4, а газы и пары бензино-керосиновых фракций — в колонну К-3. [c.47]

    В дальнейшем для жидкофазиого крекинга стали применяться те же системы труб, что и в парофазном крекинг-процессе с той разницей, что первый проводился при наивысших давлениях, которые только были возможны для данной аппаратуры, с тем, чтобы сохранить сырье в жидкой фазе. Одновременно шла разработка трубчатой печи для перегонки сырой нефти и, таким образом, в качестве нагревательного устройства для жидкофазного крекинг-процесса применялась в действительности перегонная установка высокого давления. Наиболее производительными были варианты жид-кофазного крекинга Тьюб энд Тэнк [15], Кросса [7], Даббса [10] и Холмс-Манли [1]. В них обычно использовалась трубчатка высокого давления, соединенная с реакционной камерой. Предполагалось, что нефть нагревалась в змеевике и крекировалась в реакционной камере, хотя значительная часть сырья расщеплялась в самом змеевике. [c.30]

    Пентановая фракция поступает в колонну / -J, предназначенную для удаления углеводородов С и выше. В случае необходимости в ту же колонну может поступать рецикл н-пентана. Головным продуктом колонны яйляется к-пентан, а углеводороды j выводятся из куба. Головной продукт K-J поступает затем в колонну азеотропной осушки К-2 на изомеризацию в реактор 1 поступает смесь осушенного н-пентана и рецикла, которая вместе с циркулирующим водородсодержащим газом подогревается в теплообменнике 3 до 300 °С за счет теплоты реакционных газов и в трубчатой печи 2 до 500 °С. Для охлаждения до 40 °С и конденсации реакционных газов служит конденсатор 4. Отделение газа от жидких продуктов реакции происходит в две стадии при давлении 3,0 МПа в сепараторе 5, при 1,0-1,4 МПа - в сборнике 7. Из сепаратора 5 водородсодержащий газ подается компрессором 9 для осушки в адсорбер 10, заполненный цеолитами, туда же поступает свежий водородсодержащий газ. Жидкие продукты реакции разделяются в последовательно работающих колоннах К-3 и К-4 на фракцию углеводородов С , изопентан и н-пентан, последний направляется в К-1 или непосредственно в реактор 1. [c.133]

    На агрегате конверсии метана одного из заводов вышел пз строя регулятор подачи пара. Аппаратчик трубчатой печи, не разобравшись в прпчине неисправностн, включил регулятор в работу. Подача пара значительно уменьшилась, ухудшился состав конвертированного газа, резко повысилась температура в зоне реакции, вследствие чего разорвало несколько реакционных труб и возник пожар. Ножар был ликвидирован, так как сработали взрывные панели и система защиты печи, однако нечь вышла на несколько дней из строя. [c.41]

    Трубчатые змеевиковые реакторы. Трубчатый змеевиковый реактор с вертикальным расположением труб был разработан для производства битумов по непрерывной схеме на отечественных НПЗ [2, 55, 190]. Температурный режим реакторов. (Кременчугского и Новогорьковского НПЗ) поддерживается за счет тепла дымовых газов, поступающих из форкамерной печи. Однако при таком решении плохо учитывается специфика экзотермического процесса окисления. Действительно, для ускорения нагрева реакционной смеси в первых по ходу потока трубах реактора необходимо повысить температуру дымовых газов, но в результате перегревается окисляемый материал в последующих трубах, где реакция окисления и выделение тепла идут с высокими скоростями. Так м образом, приходится поддерживать какую-то промежуточную температуру дымовых газов, нео[ тпмал у,,, как для нагрева реакционной смеси до температуры реакциь, так и для последующего поддер.жания температуры на желательном уровне. Для установок Ангарского, Киришского, Полоцкого, Новоярославского и Сызранского НПЗ найдено более удачное решение сырье предварительно нагревается в трубчатой печи, а избыточное тепло реакции в случае необходимости снимают , обдувая воздухом трубы реактора, помещенные в общий кожух (по проекту Омского филиала ВНИПИнефти каждая труба реактора помещена в отдельный кожух). [c.130]

    Б книге изложены основные методы расчета на прочность аппаратов и млшин нефтеперерабатывающих заводов. Описаны конструкции ректификационных колонн, теплообменных и реакционных аппаратов, трубчатых печей, центрифуг, фильтров, формовочных млшни, емкостей, оборудования пневмотранспорта, арматуры и рассмотрены особенности их механического расчета. Приведены сведения о применяемых материалах. [c.2]

    Выделить жирные кислоты из реакционной смеси довольно трудно. Существует несколько епссобов. Сначала экстрагируют теплой водой низшие кислоты (муравьиную, уксусную, проиионовую), затем омыляют оставшиеся кислоты и гидролизуют сложные эфиры и лактогы щелочами под давлением при 150 °С. Из продуктов гидролиза Еыделяют отстаиванием и возвращают в сырье неомыляемую фракцию — верхний слой нижний представляет собой водный раствор мыл, в котором кроме натровых солей жирных кислот содержатся соли оксикислот, а также спирты, кетоны и растворенные парафиновые углеводороды. При нагревании раствора (300—350°С и 80—120 ат) в трубчатой печи происходит дегидратация оксикислот с образованием ненасыщенных кислот [c.155]

    У становка Кросса состоит в главнейшем из трубчатой печи с газовым и масляным нагревом, реакционной камеры, дефлегматор-ной колонны и вспомогательных приспособлений (холодильшши, конденсаторы, сепараторы и т. д.). [c.285]

    В способе Холмса-Мэнлея предварительно нагретый газ-ойль вводится прямо в трубчатую печь под давлением 21 кг. Загружаемое сырье попадает в змеевик, находящийся в верхней части дефлегматора, под давлением 241/2 wie. Сырье, нагретое в трубчатой печи до 4(25°, попадает в 4 вертикальные реакционные камеры, нагретые в их центральной части. [c.287]

    Серьезным затруднением в работе установок с трубчатыми печами является отложение в трубах кокса. В промышленных условиях, как правило, работают со степенями приближения к равновесию в пределах до 60% от теории. Увеличение степени превращения сырья приводит к увеличению отложений углерода на стенках реакционных труб, что ведет к быстрому закоксова-нию. Для уменьшения коксообразования на многих промышленных установках в сырье добавляют водяной нар. Одним из условий снижения коксообразова1П1я в трубчатых печах с внешним обогревом является также применение в качестве сырья индивидуальных углеводородов или узкпх фракций и постоянство скорости подачи сырья и режима работы печи. В печах последних конструкций для снижения коксообразования на выходной части змеевика устанавливают экраны, которые уменьшают подвод тепла в реакционную зону. Существенное значение имеет также закалка продуктов реакции. [c.44]

    Одним нз способов быстрого подвода тепла, необходимого для процесса пиролиза, является смешение сырья в реакционной зоне с перегретым до высокой температуры водяным паром. Подобного рода процесс разработан фирмой Келлог [62]. Указанным способом практически может перерабатываться любое сырье — от низкомолекулярных углеводородов до бензинов н даже сырой нефти. Для перегрева пара на установках фнрмы используются трубчатые печи. [c.52]

    На осповапии обследования работы большого числа трубчатых печей было установлено, что в случае двухрядного экрана доля тенла, передаваемого первому ряду, при расстоянии между осями труб, равном двойному диаметру, составляет 68%, а второму ряду 30%. Общее количество тепла, передаваемого двум рядам труб, достигает 68 -f 30 = 98%, а однорядный экран воспринимает 88% тенла, или на 10% меньше, чем двухрядный примерно с вдвое большей поверхностью труб. Поэтому в настоящее время в большинстве трубчатых печей устанавливают однорядные экраны двухрядные экраны целесообразно устанавливать там, где необходима низкая тепловая напряженность, присущая второму ряду экранных труб, например реакционные секции термического крекинга и др. [c.89]

    Трубчатые печи с излучающими стенами из панельных горелок имеют широкий диапазон теплопроизводитель-ности от 6 до 20 млн. ккал ч. Они прилгеняются в качестве нагревательных и нагревательно-реакционных печей. Повышение теплонроизводительностн в основном достигается увеличением длины печных труб с 6 до 18 Увеличение высоты печи нежелательно, так как затрудняет эксплуатацию беспламенных панельных горелок. [c.112]

    В основных аппаратах установки к 1тали-тического крекинга с циркулирующим крупнозернистым катализатором — реакторе и регенераторе — непрерывно циркулирует таблетированный или сферический алюмосиликатный катализатор (рис. 9. 2)., Пары нефтяного сырья из трубчатой печи поступают в верхнюю часть реакционной зоны реактора. Из бункера реактора регенерированный катализатор по напорному стояку непрерывно поступает в реакционную зону и вместе с парами сырья движется прямотоком вниз. Отработанный катализатор из зоны реакции поступает в отпарную секцию и [c.189]


Смотреть страницы где упоминается термин Трубчатые печи реакционные: [c.281]    [c.304]    [c.88]    [c.28]    [c.37]    [c.125]    [c.289]    [c.87]    [c.61]    [c.62]    [c.125]    [c.125]    [c.126]   
Производство технологического газа для синтеза аммиака и метанола из углеводородных газов (1971) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте