Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экранирующий потенциал

    Рассмотрим последовательно составляющие V, и и оператора W. Экранирующий потенциал 11. Одноэлектронный матричный элемент [c.148]

    У(г) — экранирующий потенциал от диагональных членов этой матрицы, [c.427]

    Теорема Лиувилля для 6-мерного фазового пространства с учетом взаимодействия между частицами. Хотя доказать теорему Лиувилля для 6-мерного фазового пространства можно только в случае невзаимодействующих частиц, при наличии взаимодействия между частицами это можно сделать лишь приближенно. Корреляции между частицами обычно очень малы, так что поведение каждой частицы по отношению к данной группе координат тождественно поведению любой другой частицы, т. е. каждая из них испытывает действие со стороны всего коллектива частиц. В пределе бесконечного числа частиц с бесконечно малым, зарядом (так что суммарные поля всего коллектива частиц остаются конечными) одночастичная функция распределения описывает поведение системы точно. Это можно пояснить на примере системы заряженных частиц, стремящихся перестроиться так, чтобы остаться нейтральными и экранирующий потенциал которых, как следует из простых рассуждений, должен быть вида [c.39]


    По мере безграничного возрастания потенциала поверхности сила взаимодействия между коллоидными частицами растет не безгранично, а стремится к конечному пределу, близко подходя к нему при значениях Фа, близких к 100 мВ. Это объясняется тем, что с ростом ф увеличивается притяжение к поверхности противоионов, экранирующих действие внутренней обкладки двойного слоя. Взаимодействие частиц в случае высоких потенциалов поверхности определяется только составом электролита. [c.12]

    В табл. 7.3 приведены значения критических потенциалов различных металлов и растворов, выше которых начинается КРН. На нержавеющей стали 18-8 в М С1г при 130 °С трещина глубиной не более 0,013—0,025 см прекращает развитие при потенциале на 5 мВ ниже критического 38]. Для остановки роста более глубоких трещин необходим более отрицательный потенциал —это объясняется экранирующим действием металла в трещине и изменением состава раствора вследствие накопления в трещине продуктов анодного растворения. Другими словами, условия, необходимые для возникновения трещины и для ее роста, одинаковы. [c.142]

    Пространственная разделенность состояний в потенциале Хартри -Фока взаимно согласована с видом потенциала даже небольшое затравочное пространственное разделение электронных плотностей приводит к тому, что кулоновское поле ядра экранируется более полно для внешних оболочек, чем для внутренних, а это приводит к более полному разделению оболочек. [c.278]

    Пространственная разделенность электронных состояний, которая существует в случае потенциала Хартри - Фока, показьшает, что остовные и валентные электроны можно рассматривать как две подсистемы, взаимное влияние которых определяется главным образом не детальными, а некоторыми интегральными характеристиками подсистем. Это, вместе с приближением замороженного остова, позволяет сформулировать задачу расчета валентных состояний при заданных остовных как задачу о движении только валентных электронов, но в эффективном поле, отличающемся от поля Хартри — Фока. Такое эффективное поле должно быть в целом слабым по сравнению с полем Хартри - Фока, так как энергия основного состояния в эффективном поле определяет энергию валентных электронов, что на несколько порядков меньше энергии основного состояния (1х-состояния) в поле Хартри - Фока. Более того, так как орбитали валентных электронов сосредоточены в той области пространства, где потенциал Хартри — Фока мал (кулоновское поле ядра экранировано остовными электронами), то рассматриваемое эффективное поле может быть слабым не только в целом, но и в каждой точке пространства (заметим, что последнее условие не является необходимым). [c.278]


    Одна из существенных помех, которая возможна при полярографических определениях с ртутным капающим электродом, — образование полярографических максимумов. Значительную роль в их образовании играют тангенциальные движения поверхности ртутной капли, перемешивающие раствор и усиливающие подачу в зону реакции электродноактивного вещества. Движение поверхности капли возникает при быстром втекании ртути в каплю и из-за неравномерного распределения поверхностного натяжения вследствие неравномерной поляризации поверхности капли (экранирующий эффект капилляра). Подобные максимумы носят название максимумов первого рода ОНИ наблюдаются для данного иона при ограниченных значениях потенциала и обуславливают существенное увеличение тока. [c.295]

    На значение напряжения на электролизере сложное влияние оказывает материал электродов. Природа металла, как и состояние электродной поверхности, имеет прямое отношение к перенапряжению электродной реакции. С другой стороны, имеется тесная связь природы электродного материала со значением краевого угла на границе раздела фаз газ — электролит— электрод , определяющего смачиваемость электродной поверхности электролитом. Чем ближе электродный потенциал к потенциалу нулевого заряда материала электрода, тем больше краевой угол и хуже смачиваемость, тем крупнее газовые пузыри и ниже их экранирующий эффект. Все это приводит к уменьшению газонаполнения и снижению напряжения на электролизере. [c.158]

    При этом оказывается, что с ростом 2. электростатическая слагающая расклинивающего давления, возрастая, стремится к конечному пределу. Это на перв лй взгляд мало понятное явление объясняется тем, что вблизи заряженной поверхности ростом ее потенциала фо, согласно теореме Больцмана, под влиянием притяжения противоположных зарядов быстро растет пропорционально экспоненте e концентрация противоионов. В результате действие заряженной поверхности экранируется и потенциал ф с удалением от нее быстро принимает умеренные значения, не увеличивающиеся с дальнейшим возрастанием фо. [c.274]

    Этот на первый взгляд трудно понятный вывод объясняется, как мы видели, тем, что по мере роста фо-потенциала увеличивается притяжение противоионов к поверхности частицы. Таким образом, параллельно с ростом заряда внутренней обкладки двойного электрического слоя и потенциала поверхности усиливается и экранирование внешнего поля этой обкладки противоионами. Поэтому дальнейший рост напряженности электрического поля в периферийных частях ионных атмосфер и сил взаимодействия обеих частиц прекращается. Таким образом, если коллоидные частицы заряжены достаточно сильно, то их взаимодействие зависит только от заряда противоионов, экранирующих действие внутренней обкладки двойного слоя и обусловливающих его толщину, [c.292]

    В переходных рядах ионизационный потенциал изменяется очень мало, его величина лежит между 6 и 9 за. По-видимому, это является следствием наложения влияния разных факторов в то время как размер атома остается сравнительно постоянным, алия ние увеличивающегося заряда ядра компенсируется экранирующим действием электронов, добавляемых в нижележащие уровни. [c.119]

    Как видно из табл. 26, у углерода самый малый для элементов этой группы радиус атома, высокий ионизационный потенциал, большая температура плавления. Это характерно для типичного неметалла. Типичным неметаллом является также кремний. У германия проявляются некоторые металлические свойства, а олово и свинец — металлы. Они больше сходны по свойствам друг с другом, чем с германием. Сказывается экранирующее действие электронных подуровней, снижающих притяжение валентных электронов к ядру атома. Например, по электропроводности белое олово и свинец — проводники, германий, кремний и серое олово (а-Зп) — полупроводники, а углерод в виде алмаза — диэлектрик. [c.231]

    Если скорость электродного процесса на чистой, свободной от адсорбционных слоев и пленок поверхности катода превалирует над скоростью адсорбции, то поверхностно активные веще--ства экранируют его лишь частично, что приводит к снижению скорости разряда и увеличению поляризации катода (вследствие изменения [ г потенциала либо увеличения расстояния между обкладками двойного слоя). [c.354]

    Для устранения паразитного миграционного тока к исследуемому электролиту добавляют в достаточной концентрации хорошо диссоциирующее вещество, потенциал восстановления катиона которого лежит в значительно более отрицательной области, чем анализируемого, Катионы фона остаются на поверхности электрода, не разряжаясь, они образуют двойной электрический слой, экранируя электрическое поле. Поэтому исследуемые ионы не перемещаются к электроду под действием электрического поля и перемещение их обусловлено только диффузией. [c.173]


    Во-вторых, время 1 установления равновесного потенциала кислородного электрода велико, что само по себе может служить препятствием к его использованию. При подсчете I необходимо учитывать, что электрический заряд электрода воздействует на ионы раствора, находящиеся в непосредственной близости от межфазной границы, в результате чего возникает обкладка так называемого двойного электрического слоя (ДЭС) экранирующая заряд электрода. ДЭС молено рассматривать как плоский конденсатор с расстоянием между обкладками порядка атомных размеров. Для жидкого ртутного электрода дифференциальная емкость ДЭС (С) составляет 20—40 мкФ-см- , для твердых металлических электродов это значение не столь определенно (различия в шероховатости, адсорбции и т. д.). Примем, что С равно нескольким десяткам мкФ-см-2 и оценим время установления равновесного потенциала по формуле, определяюшей время заряда (разряда) электрического конденсатора с емкостью С через сопротивление Н I = кЯС. [c.544]

    Другим основным фактором устойчивости неорганических гидрозолей является потенциал поверхности, удерживающий вокруг коллоидных частиц диффузный слой ионов. Ионы этого слоя гидратированы и создают вокруг частиц гидратные оболочки, которые заслоняют (экранируют) частицы от действия молекулярных сил сцепления и стабилизуют коллоидную систему. Если она не гидрозоль, а органозоль, ее стабилизация осуществляется главным образом за счет оболочек дисперсионной среды (сольватных оболочек,) удерживаемых вокруг частиц адсорбционными силами. Однако наличие одних только сольватных оболочек из молекул среды еще недостаточно для придания гетерогенной системе значительной агрегативной устойчивости. Необходим третий компонент — стабилизатор в виде электролита (полиэлектролита). Его роль заключается, во-первых, в понижении общей поверхностной энергии системы за счет адсорбции ионов и, во-вторых, в создании защитных ионно-сольватных слоев в составе каждой мицеллы (см. гл. V). [c.130]

    Самым низким потенциалом ионизации обладает первый элемент каждого периода (щелочные металлы) убывают они от лития к францию, что определяет и нарастание восстановительной активности металлов в том же направлении. Эти закономерности характерны для всех элементов главных подгрупп. В побочных подгруппах ( -элементы), наоборот, возрастает потенциал ионизации у нижних элементов, стоящих за лантаноидами (от гафния к ртути). В связи с этим они весьма пассивные металлы, обладающие очень слабыми восстановительными свойствами, более слабыми, чем у вышестоящих элементов в той же подгруппе. Это — следствие так называемого лантаноидного сжатия. Оно заключается в том, что 14 электронов, застраивающих 4/-подуровень, не могут полностью экранировать действие возрастающего заряда ядра на внешние валентные 6з-электроны. Поэтому прочность связи б5-электронов с ядром постепенно возрастает, радиусы [c.80]

    По мере изменения состава сплава потенциал его будет почти линейно смещаться в сторону потенциала компонента, содержание которого возрастает. Однако для некоторых сплавов, например для сплава Си—Аи по достижении состава 50% (ат.), а для сплава N1—Си 7,3—13% (ат.), потенциал растворения сплава достигает потенциала более положительной составляющей. В этом случае атомы более положительного компонента экранируют атомы более отрицательного компонента, [c.292]

    Если изменять состав сплава, компромиссный потенциал его будет почти линейно смещаться в сторону потенциала компонента, содержание которого возрастает. Однако для некоторых сплавов, например для сплава Си—Аи по достижении состава 50% (ат.), а для N1—Си 7,3—13% (ат.), потенциал растворения сплава достигает значения потенциала более положительной составляющей. В этом случае атомы более положительного компонента экранируют атомы более отрицательного компонента, т. е. происходит своеобразная защита менее положительной составляющей. Такое защитное действие проявляется тогда, когда атомная доля более положительного компонента составляет не менее /г/8 от общего [c.424]

    Очевидно, что модель независимых частиц схематична. В ней утрачены многие детали атомных спектров. Как и всякое приближение, она имеет свою область применимости. В то же время она содержит мощный параметр (экранирующий потенциал), подбирая который можно воспроизвести те или иные характеристики атома. В целом модель независимых частиц охватывает основные черты электронной структуры атомов. Именно поэтому возникающие в ней понятия, такие, как спинюрби-таль, оболочка, орбитальная энергия, конфигурация, само понятие одноэлектронного приближения сохраняются во всех более реалистичных приближениях. [c.125]

    При выборе ингибиторов коррозии металлов большое значение имеет заряд поверхности металла в данном электролите, т. е. его потенциал ф в шкале нулевых точек (см. с. 164). Если поверхность металла заряжена положительно (т. е. ф > О, например, у РЬ, Сё, Г1), это способствует адсорбции анионов, которые, образуя на металле анионную сетку , снижают перенапряжение водорода и ионизации металла, что нежелательно, так как приводит к ускорению коррозии. Замедляюш,ее действие могут в этих условиях оказать лишь анионные добавки экранирующего действия, а замедлители катионного типа не применимы. [c.348]

    До сих пор мы предполагали, что коллоид не является электролитом, а это действительно верно для растворов макромолекул в неполярных растворителях. Однако в водных растворах многие макромолекулы, и прежде всего различные биоколлоиды, как правило, находятся в виде ионов. Если же раствор, кроме того, содержит обычные электролиты, то картина еще более усложняется. Здесь осмотическое равновесие сочетается с электростатическими взаимодействиями. Макроионы, которые не проходят через поры мембраны, частично удерживают около себя противоионы и нарушают их равномерное распределение возникает так называемый мембранный потенциал (играющий важную роль в процессах обмена живой клетки). Электростатически обусловленная повышенная концентрация ионов с одной стороны мембраны является причиной более высокого осмотического давления. Добавка электролита экранирует мембранный потенциал (эффект сжатия противоионной атмосферы), а тепловое движение понижает неравномерное распределение ионов, и осмотическое давление понижается. Предельный случай полностью подавленного мембранного потенциала (равномерное распределение всех ионов около мембраны) соответствует осмотическому давлению раствора неэлектролита той же концентрации. Теорию этого эффекта предложил Доннан (1911г.). Допустим, что слева от мембраны находится раствор полиэлектролита N31 с концентрацией с , а справа — раствор обычного электролита, например ЫаС1, с концентрацией с . Мембрана свободно пропускает молекулы растворителя (воды), ионы Ыа+ и С1 , но не пропускает ионы Для простоты вслед за Доннаном примем, что объемы растворов, находящихся с обеих сторон мембраны, одинаковы. Это делает вывод наглядным, не лишая его общности. Предположим также, что оба электролита полностью диссоциированы. Когда в системе установится равновесие, в ту часть раствора, где находится ЫаК, перейдет х молей ЫаС1, так что концентрация N3+ в нем повысится до - + х, концентрация К останется, как и прежде, равной с , а концентрация С1 , которая вначале была равна нулю, составит х. По другую сторону мембраны концентра- [c.45]

    Как видно из приведенного рисунка (потенциал меди находится в исходной точке координат), потенциал сплава почти линейно сдвигается к более электроположительным значениям по мере увеличения концентрации золота. По достижении состава в 50% (ат.) Аи сплав практически принимает потенциал золота. То же самое наблюдается и с твер дыми растворами N1 — Си с содержанием оа )лю 7,6—13 >/о (ат.) Си поггенциал сплава принимает значение потенциала Си. Это происхо дит от того, что атомы электроположительного компонента, находящиеся в достаточной доле в нрнсталлической решетке, нач инают экраниров/ать атомы более электроотрицательного. [c.121]

    Ионизационный потенциал является одним из небольшого числа существенных свойств атома, которые могут быть непосредственно измерены. Поэтому крайне важно выяснить влияющие на него факторы . Именно такие факторы помогают понять многие закономерности периодической системы. Для ионизационного потен циала наиболее важными будут величина заряда ядра расстоя ние внешнего электрона от ядра, т. е. атомный радиус экранирующий эффект нижележащих электронных подуровней, характери зующийся постоянной экранирования насколько внешний элек трон проникает в электронные облака нижележащих электронов В отношении последнего свойства найдено, что степень проникно вения электронов в главный квантовый уровень уменьшается в по рядке S > р > d > /. Это соответствует прочности связи электронов /75-электрон связан прочнее, чем пр-электрон, который в свою Очередь связан прочнее, чем a-электрон, и т. д. [c.117]

    Как и следовало ожидать, в пределах одной группы увеличение атомного веса ведет к уменьшению ионизационного потенциала. что связано с увеличением размера атома, в то время как тип элек тронной конфигурации сохраняется. Это значит, что влияние увеличения заряда ядра более чем уравновешивается увеличением размера атома и наличием большего числа экранирующих элек тронов. Однако есть исключения для такого изменения, а именно у элементов, следующих за лантаноидами. Эти элементы имеют больший ионизационный потенциал, чем элементы этой же груп пы, стоящие над ними, что является следствием лантаноидного сжатия, возникающего вследствие увеличения заряда ядра, не сопровождающегося появлением более удаленных электронных уровней. [c.119]

    Как и следует ожидать, бериллий, ядро которого слабо экранировано, заметно отличается от остальных элементов этой подгруппы. Его атом имеет малый радиус, наименьшее число электронов и отсюда большой потенциал ионизации, что обусловливает преимущественно ковалентный характер соединений этого элемента. Частично ионный характер имеют связи в оксиде бериллия ВеО — высокоплавящемся и нелетучем соединении. [c.154]

    Наконец, при потенциалах, превышающих равновесный потенциал кислородного электрода, увеличение плотности тока будет происходить в результате окисления воды с выделением газообразного кислорода. Легче всего этот процесс протекает на тех металлах, чьи окисные пленки обладают высокой электронной проводимостью (золото, платина). На анодах нз таких металлов гидроксильные ионы беспрепятственно отдают свои электроны, окисляясь до молекулярного кислорода. Если же окпсные пленки, экранирующие поверхность металла, отличаются низкой электро[щой проводимостью, то анодный процесс направляется не на разложение воды с выделением кислорода, а на увеличение толщины окисной пленки — так называемое анодное оксидирование. При этом анодный потенциал нередко может достигать значений порядка сотен вольт (точнее говоря, таких знач ений достигает падение напряжения в пределах окисной пленки при протекании электрического тока). [c.196]

    Когда потенциальная энергия притяжения ионов к поверхности мала (гефо/4кТ < 1), происходит экспоненциальное падение потенциала по мере увеличения расстояния от поверхности, причем потенциал в любой точке диффузной части двойного слоя пропорционален потенциалу самой поверхности. Наоборот, если потенциальная энергия притяжения ионов к поверхности превосходит кинетическую энергию нх теплового движения (гефо/4кТ> 1), то основная компенсация поверхностного заряда происходит непосредственно вблизи поверхности — противоионы, близко расположенные к поверхности, сильно экранируют ее заряд. Вдали от поверх- [c.185]

    Сопоставление выражений (VII. 14) и (VII. 15) показывает, что на больших расстгояниях от поверхности всегда происходит экспоненциальный спад потенциала с расстоянием, при этом для слабозаряженной поверхности <р(х) <ро, тогда как для сильно заряженной поверхности ее потенциа1[ сро не влияет на распределение потенциала в удаленных от поверхности частях диффузного слоя. Последнее обстоятельство связано с сильным взаимодействием противоионов с сильно заряженной поверхностью находящиеся вблизи такой поверхности противоионы значительно экранируют ее заряд. Таким образом, распределение потенциала вдали от сильно заряженной сгенки зависит от толщины ионной атмосферы S и величины [c.223]

    Комплексный анион иногда представляю как диполь, который адсорбируется на поверхности катода. Войдя в двойной электрический слой, такой аннон претерпевает деформацию, ориентируясь своим положительным концом к катоду, а отрицательным в раствор. По достижении достаточного потенциала сложный анпои разрывается, при этом ион металла входит в сферу влияния электронов кристаллической решетки, а освободившиеся простые анионы вытесняются из двойного слоя в раствор. При соответствующем потенциале не исключена возможность выхода электрона из металла на адсорбированный диполь и разряд его в жидкой фазе (туннельный эффект). Присутствие в электролите поверхностно активных Катионов облегчает разряд комплексного аниона, так как такие катионы, адсорбируясь на поверхности, экранируя ее, тем самым снижают отталкивающее воздействие заряженной поверхности на сложный анион. [c.245]

    Рассеяние на примесях. Примесные атомы, как мы видели (см. п. 2), создают дискретные энергетические уровни, расположенные вблизи разрешенных зон, и потому оНи легко ионизируются. Положительно (донорный) или отрицательно (акцепторный) заряженный примесный атом в решетке полупроводника создает дальнодействующее кулоновское поле с потенциалом ф= 2,е1%г, где х — Диэлектрическая постоянная кристалла. Носители экранируют заряд этого поля, ограничивают область его действия. Брукс и Херринг (1951 г.) учли экранировку и представили потенциал поля в виде ф = 2е1уг) где Го зависит от кон- [c.250]

    Потенциал поверхности алюминиевого вакуумного покрытия через сутки испытаний близок к потенциалу стали. Характерная особенность поведения пористого вакуумного покрытия — локализация коррозионного процесса в порах с образованием труднорастворимых продуктов коррозии байерита и бемита, которые экранируют пору. Вследствие уменьшения pH раствора на дне поры создаются условия для анодного раст]ворения железа, и на поверхности алюминия появляются точки ржавчины. Для алюминиевьк беспористых покрытий защитная способность более значительна. [c.82]


Смотреть страницы где упоминается термин Экранирующий потенциал: [c.117]    [c.117]    [c.370]    [c.56]    [c.19]    [c.38]    [c.86]    [c.86]    [c.289]    [c.42]    [c.247]    [c.321]    [c.396]    [c.184]    [c.226]    [c.86]    [c.100]   
Смотреть главы в:

Начала квантовой химии -> Экранирующий потенциал




ПОИСК







© 2024 chem21.info Реклама на сайте