Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование ионов и диссоциация

    Понятия константа ионизации и константа диссоциации обычно взаимозаменимы, но в некоторых случаях желательно делать различие ионизация — это образование ионов диссоциация — распад на части, [c.16]

    Выделение водорода из недиссоциированных молекул кислоты (так же как и из молекул воды) требует значительной энергии активации и возможно лишь в области весьма отрицательных потенциалов. В то же время непосредственный разряд ионов водорода Н+ совершается со значительно меньшими торможениями. Поэтому акт переноса заряда (15.55 6) предполагает предварительную стадию диссоциации уксусной кислоты, приводящую к образованию ионов водорода. Таким образом, здесь стадии переноса заряда предшествует чисто химическая стадия диссоциации кислоты. Если она замедлена, то вблизи электрода возникает дефицит ионов водорода по сравнению с равновесным и появляется реакционное перенапряжение. Уравнение (15.55 6) в действительности сложнее и само слагается из нескольких стадий, например переноса заряда с образованием атомов водорода, адсорбированных металлом Наде [c.321]


    Возможность и степень распада на ионы определяется природой растворенного вещества и природой растворителя. Распад на ионы (вязан либо с явлением диссоциации (разъединения), либо с явле-пием ионизации (образования ионов). Так, пр,и растворении ионных соединений (поскольку они уже состоят из Ионов) имеет место диссоциация. Роль растворителя в этом случае заключается в создании условий для разъединения ионов противоположного знака и в препятствовании процессу молизации. Диссоциация ионных соединений протекает тем легче, чем полярнее молекулы растворителя. При распаде ковалентных соединений на ионы происходит гетеролитиче-ский разрыв связи, т. е. ионизация. [c.128]

    Существуют важные доказательства, подтверждающие протекание диспропорционирования парафинов через механизм образования иона карбония. Последний включает образование промежуточной структуры, состоящей из двух молекул парафина [16, 71], с последующей диссоциацией промежуточного соединения на два новых осколка, один из которых содержит большее, а другой меньшее число атомов углерода, чем молекула исходного парафина. Одно из возможных направлений образования бутанов и гексанов из н-пентана в общих чертах представлено уравнениями (14—23). Для простоты анион опущен во всех уравнениях, кроме первого  [c.26]

    Образование отдельных ионов при взаимодействии хлорида алюминия и хлористого этила маловероятно, так как это связано с разрывом связи у первичного атома углерода С—С1, что энергетически невыгодно. При взаимодействии хлористого трет-бу-тила с хлоридом алюминия возможна его диссоциация с образованием ионов или ионной пары, так как в этом случае связь С—С1 значительно ослаблена  [c.331]

    При бомбардировке молекулы электронами возможны различные процессы ионизации и диссоциации. До сих пор нет теории, которая позволила бы рассчитать вероятность того или иного процесса возбуждения молекулы или ее распада. Столкновение электронов, обладающих низкой энергией, с молекулами приводит обычно к переходу молекулы на более высокие вращательные, вибрационные или электронные энергетические уровни. При повышении скорости движения электронов наступает момент, когда энергия ударяющего электрона оказывается достаточной для ионизации молекулы. При дальнейшем повышении энергии электронов возбуждение ионизированной молекулы может привести к диссоциации, в результате которой появляются ионы с меньшей массой, а также нейтральные осколки молекулы. Потенциал, соответствующий наименьшей энергии электронов, при которой в результате столкновения электрона с молекулой происходит диссоциация молекулы с образованием ионов, носит название потенциала появления. [c.76]


    Следующие сильные кислоты найдены в кислотном дожде. Для каждой напишите название и реакцию диссоциации (образования ионов) в водном растворе  [c.427]

    Крутой подъем электропроводности выше плотности 0,2 г/см показывает, что образование ионов сильно зависит от плотности. При плотностях пара 0,5—0,6 г/см диссоциация КС1 на ионы уже значительная. [c.66]

    В 1887 г. Аррениусом была предложена теория электролитической диссоциации (см. гл. IV), которая по-новому решила вопрос о природе кислот и оснований. Согласно этой теории кислота — это вещество, диссоциирующее в растворе с образованием ионов Н . Все общие свойства кислот — кислый вкус, действие на металлы, индикаторы и т. п. являются свойствами ионов водорода. Основание—это вещество, диссоциирующее с образованием ионов ОН . Реакция нейтрализации сводится к взаимодействию водородных и гидроксид-ионов, приводящему к образованию недиссоциированных молекул воды. [c.232]

    Подобное взаимодействие с молекулами растворителя свойственно ие только ионным молекулам, но и молекулам с сильно полярной связью, хотя и в более слабой степени. Это взаимодействие и приводит к диссоциации такой молекулы на ионы. Сильному ослаблению могут подвергаться только сильно полярные связи. Поэтому, например, уксусная кислота при растворении ее в воде в некоторой степени диссоциирует с образованием ионов водорода, а спирты и сахар такой способностью практически не обладают. [c.385]

    Помимо миграции, может происходить диссоциация с образованием иона карбония и олефина  [c.653]

Рис. 27. Влияние положения гидроксила на вероятность образования ионов [Н,СНОН]+ при диссоциации вторичных спиртов Рис. 27. <a href="/info/1576524">Влияние положения</a> гидроксила на <a href="/info/363014">вероятность образования ионов</a> [Н,СНОН]+ при <a href="/info/5197">диссоциации вторичных</a> спиртов
    Адиабатический потенциал ионизации молекулы или атома теоретически определяется как энергия, необходимая для удаления электрона от нейтральной частицы в основном состоянии, с образованием молекулярного или атомного иона также в основном состоянии. Термин потенциал появления применим к тем случаям образования ионов, когда наряду с ионизацией наблюдается и диссоциация. Тогда по аналогии потенциал появления осколочного иона можно определить как энергию, необходимую для образования иона и соответствующего нейтрального осколка в их основном состоянии. [c.174]

    Особенностью сильных электролитов является их полная электролитическая диссоциация в водном растворе. Однако при экспериментальном определении степени диссоциации этих электролитов получаются значения ниже 100% (см. примеры 53—56). Это несоответствие обусловлено наличием электростатического взаимодействия образующихся заряженных частиц, ионов, приводящее к образованию ионных пар. Последние отличаются от молекул тем, что ионы в них не соприкасаются непосредственно друг с другом, а разделены одним или несколькими слоями воды, образуя с ними гидратные комплексы. [c.46]

    Известны и многие другие тепловые эффекты теплоты полиморфных и агрегатных превращений (см. гл. IV), образования ионов в водных растворах, ионизации газов, разрыва связей и диссоциации молекул в газообразном состоянии, адсорбции и др. [c.50]

    Вычислите стандартную теплоту образования иона водорода Н+, если известны энергия диссоциации молекулы Нг и энергия ионизации атома водорода. [c.20]

    В гл. 1 было показано, что образование ионов нри растворении электролитов, т. е. процесс электролитической диссоциации, требует значительной затраты энергии. Происхождение этой энергии даже не рассматривалось в теории Аррениуса, хотя без решения этого вонроса невозможно понять ни причин, лежащих в основе электролитической диссоциации, ни ее природы. [c.47]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]


    Образование, как правило, олефинов в этих первичных стохиомет-рических реакциях диссоциации дает возможность подойти к концепции, которая аналогична теории, объясняющей низкотемпературные реакции присоединения над кислыми катализаторами, а именно, объяснить образование иона карбония простым присоединением протона (Н+)к олефину. Прежде всего, необходимо рассмотреть механизм и энергетику этой реакции [c.117]

    Важный класс неорганических соединений, выделяемый по функциональным признакам, составляют кислоты. С позиций теории электролитической диссоциации к кпслогам относятся вещества, способные диссоциировать в растворе с образованием ионов водорода. С точки зрения протолити геской (протонной) теории кислот и оснований кислотами называются вещества, которые могут быть донорами протонов, т. е. способны отдавать ион водорода. [c.32]

    При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить нрнсутстиием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, наиример при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода. [c.243]

    При растворении в воде молекулы фтороводорода диссоциируют с образованием ионов Н+ и Р . При этом частично разрываются водородные связи, так что диссоциация НР на иоиы требует значительной затраты энергии. Поэтому фтороводород диссоциирует в водных растворах в значительно меньшей стеяени, чем другие галогеноводороды константа диссоциации фтороводорода [c.361]

    Определяемая экспериментально степень диссоциации а для сильных электролитов не отражает истинной картины относительного распада электролита на ионы. Опытным путем определяется так называемая кажущаяся степень диссоциации, она всегда ниже истинной степени диссоциации, которая для растворов сильных электролитов близка к единице. Кристаллические решетки многих сильных электролитов, как показывают рентгенографические исследования, построены из ионов, и уже одно это обстоятельство говорит о том, что в растворе не может быть неднссоциированных молекул. Однако с увеличением концентрации сильного электролита в растворе усиливается взаимное притяжение разноименно заряженных ионов, которое при некотором достаточном приближении их друг к другу приводит к образованию ионных пар. В растворах сильных электролитов ионные пары ведут себя подобно отдельным молекулам, хотя и не являются ими. Следовательно, недиссоциированную часть сильного электролита можно рассматривать как часть электролита, которая принимает участие в образовании ионных пар. [c.102]

    В любом растворителе чем больше ионы, тем больше степень диссоциации. Например, константа равновесия образования ионной пары К в нитробензоле равна 80 для хлорида тет-раэтиламмония, 62 для бромида, слишком мала, чтобы определить ее для пикрата тетра-н-бутиламмония, но равна 7 для пикрата тетраэтиламмония [26]. [c.17]

    Обычно в растворе устанавливается равновесие между этими тремя формами, положение которого зависит от различных факторов (см. ниже), однако наличие в молекуле жесткого скелета может привести к тому, что будет существовать только одна форма. Свойства этих трех форм и особенно кислотность и способность к образованию ионных пар и к их диссоциации весьма различаются. Было показано [362], что в неполярных растворителях еноляты щелочных металлов ациклических р-ке-тосоединений находятся главным образом в О-форме и между анионом и катионом существует сильная ассоциативная связь. Это взаимодействие остается сильным даже в водных растворах [362]. [c.197]

    ИК-спектры, однако, не подтверждают наличия сколько-нибудь заметного количества ионов НзО на поверхности Ма- и Са-образцов обычного монтмориллонита [66] и его синтетического фтор-аналога [92]. Лишь в ИК-сп ктре воды, сорбированной Мд-монтмориллонитом [68], проявляется поглощение в области 2900 см , которое может свидетельствовать о диссоциации части молекул с образованием иона НзО или НзОг . Однако выделить долю этих ионов в общем количестве связанной минералом воды на основе ИК-данных трудно. [c.38]

    Пользуясь данными табл. 5-3, вычислите константу диссоциации гидроксида аммония. Присутствует ли действительно в растворе недис-социированная форма NH4OH Если нет, то как протекает реакция образования иона аммония и ОН Каков pH в 0,0100 М растворе аммиака  [c.261]

    В растворах сильных электролитов при повыщенных концентрациях может происходить также ассоциация ионов. Так, в водных растворах, например, установлено образование ионов ВаС1+, Ag li, Li l2 и др. При разбавлении раствора эти частицы диссоциируют. Поэтому с повышением концентрации растворов сильных электролитов даже нри полной их диссоциации свойства раствора изменяются аналогично тому, как если бы при этом уменьшалась степень диссоциации электролита. [c.251]

    Кроме описанных явлений, в растворах сильных электролитов при повышенных концентрациях может происходить ассоциация ионов. Так, в водных растворах, например, установлено образование ионов ВаС1 Ag l2, Ь1С12 и др. При разбавлении эти частицы диссоциируют. Поэтому с повышением концентрации сильных электролитов даже при полной их диссоциации происходят изменения свойств раствора, аналогичные тому, как если бы при этом уменьшалась степень диссоциации электролита. Ясно, что эти изменения ш связаны с изменением истинной степени диссоциации, как это имеет место у слабых электролитов, а обусловливаются проявлением кажущейся степени диссоциации. Последняя, в свою очередь, не отражается концентрацией раствора, чем и обусловливается неприменимость закона действующих масс при подстановке в него истинных концентраций растворов электролитов. [c.180]

    Многие хорошо растворимые комплексные соединения можно разрушить действием других электролитов или растворителя, если в результате этого образуются малорастворимые осадки или новые комплексные ионы, диссоциация которых меньше диссоциации комплексного иона исходного вещества. Например, прибавлением к раствору [Ag( N)2 сульфида натрия можно полностью разрушить комплексное соединение, осаждая ион серебра в виде труднорастворимого осадка Ag2S. Это происходит благодаря тому, что произведение растворимости Ag2S значительно меньше константы нестойкости комплексного цианид-иона (ПРАе з = = 5,9-10 (/ С )[Ае(сы),] = 10 ). При образовании осадка [c.200]

    В молекулах или в кристаллах соединений с и о и н о й связью содержатся не нейтральные атомы элементов, а их ионы, и, например, хлористый натрий состоит из ионов Na+ и С " не только в водных растворах, но и в любом его состоянии. Из этих ионов состоят, в частности, и кристалл поваренной соли и молекулы Na l в парах. Таким образом, в отношении ионных соединений развитие электронной теории валентности избавило гипотезу электролитической диссоциации от задачи объяснить процесс образования ионов, так как при растворении такого электролита происходит лишь разъединение ионов, а не образование их. Переход ионов в раствор происходит в результате взаимодействия их с молекулами растворителя, в результате образования связей между ионом и молекулами растворителя (сольватация ионов) и, в частном случае, молекулами воды (гидратация ионов). [c.383]

    Так же ведут себя и другие кислоты. Таким образом, для процесса образования ионов нотенциальными электролитами ие совсем уместно применять термин диссоциация . По существу здесь не диссоциация, а электролитическая ионизация. [c.172]

    Дойствие воды оказывается наибольшим именно в тех случаях, когда в масле содержатся низкомолекулярные кислоты, склонные к диссоциации и образованию ионов водорода. [c.318]

    В. К. Потапов, В. Г. Васильев и И. Н. Туницкий [94, 95], изучая кривые вероятности появления различных ионов, показали, что образование ионов (С Н2 +1)+ из октана инонана происходит при простом разрыве одной связи С—С на ион и радикал, так как возникновение большого числа нейтральных осколков энергетически менее выгодно. Рассмотрение механизма появления ионов (СпНгп), в частности ионов ( зH2) привело к заключению об одновременном разрыве двух связей С—С и соединении концевых частей углеводородной цепи в одновременном акте. Сопоставление масс-спектров, полученных при электронных и ионных столкновениях, привело к выводу о том, что диссоциация ионов происходит через некоторое время после момента возбуждения, а относительные вероятности распада незначительно зависят от массы и типа нейтральной частицы, с которой происходит соударение [96]. [c.52]

    Другое направление распада — образование ионов (М —15)+, количество которых мало зависит от величины ра-днкяла Я, резко падает при его разветвлении [178—180] с одновременным увеличением интенсивности пика, отвечающего ионам [(СНз)з51 ]+ (рис. 29). Последующий распад ионов (М—15)+ и (М—29)+ связан с миграцией водорода и выделением нейтральной частицы с массой 28, возможно имеющей структуру этилена. Эти реакции можно проследить на примере диссоциации молекулярного иона диметилдиэтилсилана  [c.101]

    Данные, приведенные на рис. У1-11, характеризуют содержание Н2504, НЗО и ЗОГ в зависимости от концентрации серной кислоты. Из этих данных видно, что в разбавленных растворах серной кислоты диссоциация в основном происходит с образованием ионов 30 . При повышении концентрации Нг304 равновесие резко сдвигается в сторону образования ионов НЗО . Образование надсерной кислоты происходит только при высокой концентрации Н2804, когда концентрация ионов 50 становится очень малой. [c.198]

    Общая концентрация ионов хлора равна сумме концентраций ионов хлора, образованных при диссоциации соли AI I3 и соляной кислоты НС1, поэтому [c.48]


Смотреть страницы где упоминается термин Образование ионов и диссоциация: [c.118]    [c.348]    [c.584]    [c.408]    [c.141]    [c.171]    [c.32]    [c.304]    [c.305]    [c.306]    [c.62]    [c.95]    [c.32]    [c.109]   
Смотреть главы в:

Анорганикум. Т.1 -> Образование ионов и диссоциация




ПОИСК





Смотрите так же термины и статьи:

Ионные образование

Ионов образование

Ионы образование



© 2025 chem21.info Реклама на сайте