Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация и свойства ионов в водных растворах

    Титрование в неводных и смешанных растворителях открывает возможности аналитических определений, не осуществимых в водном растворе. В неводных растворителях могут быть определены нерастворимые или разлагающиеся в воде соединения, проанализированы без предварительного разделения многие сложные смеси, оттитрованы соединения, кислотные или основные свойства которых в воде выражены очень слабо, и т. д. Расчет кривых титрования во многих неводных растворителях осложняется по сравнению с таким же расчетом для водных растворов неполнотой диссоциации растворенных веществ, образованием ионных пар и т. д. Количественные характеристики этих процессов часто отсутствуют. Сами кривые титрования имеют примерно такой же общий вид, как и кривые титрования водных растворов. Точка эквивалентности в неводных растворах устанавливается также с помощью цветных индикаторов или рН-метров. Конечно, интервал перехода индикаторов и сама их окраска в неводных растворителях могут меняться по сравнению с соответствующими свойствами в водных растворах, однако механизм индикаторного действия сохраняется. В неводных титрованиях обычно применяют те же известные по анализу водных растворов индикаторы — фенолфталеин, метиловый красный и др., широко используют рН-метры, особенно при анализе смесей. [c.217]


    Это сближает свойства слабых и сильных электролитов и говорит о том, что их диссоциацию следует рассматривать с единой точки зрения. Полная диссоциация электролитов в водных растворах является только частным, предельным случаем диссоциации электролитов с высоким значением константы диссоциации. При этом нужно сказать, что и в водных растворах можно найти соли, диссоциация которых подчиняется закону действия масс, хотя кристаллы их состоят из ионов. [c.302]

    Теория Аррениуса с успехом применялась для объяснения свойств кислот и оснований. В соответствии с теорией электролитической диссоциации кислоты в водных растворах диссоциируют с образованием ионов водорода .  [c.94]

    Теория электролитической диссоциации является очередной теоретической платформой. Она способствует развитию учения о периодичности, вносит дополнительные представления в систему знаний о строении вещества и базируется на уже известной учащимся теории химической связи. В ней показано, под влиянием каких причин может произойти разрыв связей и как это происходит, а также какими свойствами обладают водные растворы электролитов и почему. При изучении теории электролитической диссоциации иногда используют небольшие по объему, но важные сведения о химическом равновесии. Образовательная цель темы — сформировать понятие о сущности, механизмах, условиях процесса диссоциации, понятие о веществах-электролитах, о поведении ионов в растворе и о реакциях между ними. [c.233]

    Особенно полно на роль химического взаимодействия при проявлении кислотно-основных свойств раствора указал Гантч [36]. Взаимодействие кислоты с растворителем он рассматривал как процесс солеобразования, в результате которого получается продукт присоединения (ониевая соль). В зависимости от свойств кислоты и растворителя ониевая соль может полностью или частично диссоциировать на ионы. Например, процесс диссоциации НС1 в водном растворе может быть представлен следующим образом  [c.11]

    Типичным свойством многих соединений с ионной связью (которые не взаимодействуют в водой или не разлагаются до плавления) является их способность к диссоциации на составляющие ионы вследствие подвижности ионов водные растворы и (или) расплавы ионных кристаллов проводят электрический ток (см. 7.2). [c.143]

    В 1887 г. шведский ученый Аррениус сформулировал теорию электролитической диссоциации, согласно которой водные растворы электролитов содержат главным образом свободные ионы. Эта идея совершила коренной переворот в установившихся воззрениях и, дав удивительно простое объяснение многим свойствам растворов, оказалась исключительно плодотворной для науки. Существенное усовершенствование в теорию Аррениуса внес И. А. Каблуков. Он ввел в 1891 г. представление о взаимодействии ионов с молекулами растворителя, которое получило название сольватации ионов. Это связало теорию Аррениуса с химической теорией растворов Д. И. Менделеева, выдвинутой еще в 1868 г. [c.24]


    При использовании для синтеза анионитов исходных продуктов, обладающих более высокими основными свойствами, получаются поглотители с явно выраженными щелочными свойствами. В водном растворе, окружающем зерна таких анионитов, вследствие диссоциации более основных поливалентных соединений формируется ионная атмосфера, в которой содержится часть весьма легко подвижных гидроксильных ионов. Малая прочность связи таких гидроксильных ионов с положительно заряженной твердой фазой сильноосновных анионитов позволяет производить их замену не только сильными , но и слабыми анионами, содержащимися в фильтруемом растворе. [c.515]

    Для соединений, которые образуют два иона, фактор Вант-Гоффа i = 2,0 для соединений, образующих три иона, г = 3,0 и т. д. Как было отмечено выше, повышение температуры кипения, понижение температуры плавления и осмотическое давление зависят только от числа частиц в растворе и не зависят от их природы. Такое истолкование согласуется с тем, что все соединения, которым присущи эти свойства, в водном растворе проводят электрический ток, поэтому они были названы электролитами. (Как будет показано ниже, теория электролитической диссоциации справедлива в отношении существования ионов в растворе, но не их образования в момент растворения см. главу 13.) [c.163]

    Многие основания в отличие от кислот являются ионными соединениями, т. е. и до растворения в воде они состоят из ионов. Как и при растворении любых других ионных веществ, при растворении оснований ионы отделяются друг от друга (этот процесс называется диссоциацией. - Ред.) и распределяются равномерно по раствору. Свойства, которые мы связываем с основаниями, проявляет в водном растворе гидроксид-ион ОН. Вот уравнения растворения некоторых оснований  [c.426]

    В 1914 г. Л. В. Писаржевским было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г.) аналогичные идеи высказаны Н. А. Изгарышевым и А. И. Бродским. По Л. В. Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла иа ионы и электроны и стремление образовавшихся ионов сольватиро-ваться, т. е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия одно — между атомами металла и продуктами его распада (ионы и электроны) и другое — при сольватации (в водных растворах — гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Л. В. Писаржевским задолго до квантовой механики, статистики Ферми и других современных теоретических методов, [c.216]

    При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода. [c.242]

    Другую группу составляют сильные электролиты. Экспериментальное определение степени диссоциации таких электролитов дает неоднозначные величины. Закон действующих масс для сильных электролитов неприменим. Объяснить их свойства по теории Аррениуса невозможно. Для объяснения свойств растворов сильных электролитов было выдвинуто предположение об их полной диссоциации при любых концентрациях и о значительном взаимодействии образовавшихся ионов между собой. Силы межионного взаимодействия зависят от расстояния между ионами и убывают до нуля при бесконечном разбавлении раствора. Сильными электролитами являются водные растворы большинства солей, а также некоторых кислот и оснований. [c.204]

    КИСЛОТЫ — химические соединения, содержащие в своем составе водород, способный замещаться металлами с образованием солей, а также взаимодействующие с основаниями и основными оксидами, с образованием соли и воды. Общим свойством К- является образование при диссоциации в водных растворах положительно заряженных ионов водорода, например, [c.127]

    Еще в конце XIX в. было установлено влияние добавок кислот и оснований на скорость реакций в водных растворах. Это привело к заключению, что ионы водорода н гидроксила отличаются каталитическими свойствами. Дальнейшие исследования показали, что каталитическая активность кислот и оснований сохраняется и в неводных растворах, где электролитическая диссоциация весьма слаба. [c.408]


    Поляризация ионов оказывает заметное влияние на свойства образуемых ими соединений. Поскольку с уси.лением поляризации возрастает степень ковалентности связи, то это сказывается на диссоциации солей в водных растворах. Так, х,порид бария ВаСЬ принадлежит к сильным электролитам и в водных растворах практически полностью распадается на ионы, тогда как хлорид ртути Hg b почти не диссоциирует на ионы. Это объясняется сильным поляризующим действием иона радиус которого (112 пм) заметно меньше радиуса иона Ва + (138 п.м). [c.146]

    В последнее время для характеристики кислотности комплексов используют также другие величины и методы. Эти методы можно отнести к корреляционным, так как они не дают возможности непосредственно измерить активность иона водорода и концентрацию депротонированных форм, а используют зависимость того или иного свойства комплексного соединения от его способности к кислотной диссоциации. Эта группа методов включает метод ИК-спектроскопии. А. А. Гринбергом и Ю. С. Варшавским [12] была установлена корреляция между величинами рА"а и бд-частотой симметричных деформационных колебаний молекул NHg в комплексах Pt(IV) кислотными свойствами в водных растворах обладают комплексы, в которых бд 1320 см , и чем выше эта частота, тем больше кислотные свойства комплексов. Аналогичная корреляция наблюдается и в аммиакатах Pt(IV) на примере веерных колебаний аминогруппы шннг если nh. 1230 см , то комплексу присущи кислотные свойства. К преимуществам этого метода относится возможность оценивать с его помощью константы диссоциации очень слабых комплексных кислот. [c.61]

    В предыдущем разделе был рассмотрен ряд правил, которые позволяют качественно предвидеть кислотно-основные свойства молекул и неорганических ионов. Однако при оценке кислотных свойств в водных растворах иногда встречаются дополнительные трудности, вызванные, например, гидратацией ионов или образованием водородных связей. Тем не менее в случае некоторых типов кислот бьци установлены зависимости, которые позволяют хотя бы ориентировочно предсказать, как изменятся значения константы диссоциации, которая является мерой сравнения тенденции протонных кислот к передаче протона молекуле воды. [c.214]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Обычно в растворе устанавливается равновесие между этими тремя формами, положение которого зависит от различных факторов (см. ниже), однако наличие в молекуле жесткого скелета может привести к тому, что будет существовать только одна форма. Свойства этих трех форм и особенно кислотность и способность к образованию ионных пар и к их диссоциации весьма различаются. Было показано [362], что в неполярных растворителях еноляты щелочных металлов ациклических р-ке-тосоединений находятся главным образом в О-форме и между анионом и катионом существует сильная ассоциативная связь. Это взаимодействие остается сильным даже в водных растворах [362]. [c.197]

    В растворах сильных электролитов при повыщенных концентрациях может происходить также ассоциация ионов. Так, в водных растворах, например, установлено образование ионов ВаС1+, Ag li, Li l2 и др. При разбавлении раствора эти частицы диссоциируют. Поэтому с повышением концентрации растворов сильных электролитов даже нри полной их диссоциации свойства раствора изменяются аналогично тому, как если бы при этом уменьшалась степень диссоциации электролита. [c.251]

    В виду того что негидратированыые ионы в растворе отсутствуют, свойства растворов определяются составом гидратированных ионов. Так, свойства водных растворов Сг + обусловлены свойствами аквакомплекса [Сг(Н20)д 1 +, а кислая реакция СгС1з(р) — его диссоциацией, например [Сг(Н20)в [Сг(Н20)5(ОН)Р+Н+. [c.170]

    Кроме описанных явлений, в растворах сильных электролитов при повышенных концентрациях может происходить ассоциация ионов. Так, в водных растворах, например, установлено образование ионов ВаС1 Ag l2, Ь1С12 и др. При разбавлении эти частицы диссоциируют. Поэтому с повышением концентрации сильных электролитов даже при полной их диссоциации происходят изменения свойств раствора, аналогичные тому, как если бы при этом уменьшалась степень диссоциации электролита. Ясно, что эти изменения ш связаны с изменением истинной степени диссоциации, как это имеет место у слабых электролитов, а обусловливаются проявлением кажущейся степени диссоциации. Последняя, в свою очередь, не отражается концентрацией раствора, чем и обусловливается неприменимость закона действующих масс при подстановке в него истинных концентраций растворов электролитов. [c.180]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    В приведенном выше примере определения степени диссоциации такого сильного электролита, как NaOH, было получено значение а, равное 82%. Вычисленное значение степени диссоциации сильного электролита может показаться неожиданным, так как согласно современным представлениям сильные электролиты в водных растворах полностью диссоциированы на ионы. Тот факт, что по экспериментальным данным степень диссоциации сильных электролитов всегда оказывается меньше 100%, объясняется электростатическим взаимодействием между ионами. Вследствие этого активность ионов уменьшается, и все свойства растворов, зависящие от концентрации ионов, проявляются так, как если бы она была меньше, чем их образуется при полной диссоциации электролита. [c.284]

    Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция (IV) обычно проходит до конца, а реакция (V) практически еще не начинается. Напрймер, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN0з H20 и НКОз-ЗНзО одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют па сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика (смеси диоксана с водой), то образуются ионные молекулы — ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов. [c.295]

    Ввиду того, что негидратированные ионы в растворе отсутствуют, свойства растворов определяются составом гидратированных ионов. Так, свойстза водных растворов Сг " обусловлены свойствами аквакомплекса [Сг(Н20)в] , а кислая реакция СгС1я (р) — его диссоциацией, например [Сг(Н20)в1 " = 1Сг(Н20)5(0Н)] + Н". [c.177]

    В растворах сильных электролитов при повышенных концентрациях может происходить также ассоциация иоиов. В водных растворах установлено образование сложных ионов, например ВаС1, А СП, иС г. При разбавлении раствора эти часгицы диссоциируют. Поэтому с повышением концентрации сильных электролитов в растворе даже при полной их диссоциации свойства раствора изменяются аналогично тому, как если бы уменьшалась степень диссоциации электролита. [c.269]

    Сопоставим определение кислот и оснований по Бренстеду с классическим определением кислот и оснований по Аррениусу. Согласно последнему определению кислотой называется вещ,ество, которое в водном растворе диссоциирует с образованием ионов водорода. Это определение полностью вписывается в определение Бренстеда, т. е. любая кислота по Аррениусу одновременно является кислотой по Бренстеду. Действительно, диссоциация с образованием иона Н+ есть результат передачи протона молекуле воды, т. е. проявление свойств кислоты по Бренстеду. Обратное неверно. Определение понятия кислоты по Бренстеду шире, чем по Аррениусу. Кислотой по Бренстеду может быть не только вещество, но и частицы, не способные существовать в виде самостоятельного вещества, например ион аммония или анион НаРО Последние могут сосуществовать в виде вещества только с соответствующими противоионами, например ион аммония в виде хлористого аммония, а анион НаРОГ в виде однозамещенного фосфорнокислого натрия МаН2Р04. Оба последних соединения в теории Аррениуса рассматриваются как соли. [c.234]

    Ион аммония ЫН+4 имет конфигурацию правильпого тетраэдра (см. 6, гл. И1). Водный раствор аммиака обладает всеми свойствами слабого основания, константа диссоциации гидроокиси аммония при 25° составляет 1,8-ЮЛ [c.300]

    Вещества КОН, Ва(ОН)2, NaOH и подобные им основные гидроксиды в твердом состоянии являются ионными кристаллами при их электролитической диссоциации в водном растворе образуются ионы ОН —сильное основание, а также ионы К , Ва " , Na" и др., которые кислотными свойствами в воде не обладают. [c.122]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление — восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насьпденные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.51]


Смотреть страницы где упоминается термин Диссоциация и свойства ионов в водных растворах: [c.122]    [c.172]    [c.282]    [c.248]    [c.382]    [c.181]    [c.128]    [c.160]    [c.237]    [c.299]    [c.44]   
Смотреть главы в:

Электронное строение и химическая связь в неорганической химии -> Диссоциация и свойства ионов в водных растворах




ПОИСК





Смотрите так же термины и статьи:

Диссоциация в водных раствора

Диссоциация свойства

Раствор ионный

Растворов свойства

Свойства водных растворов ПАВ



© 2025 chem21.info Реклама на сайте