Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичные реакции промежуточные соединения

    Вторичные реакции промежуточные соединения [c.17]

    При исследованиях первичных реакций фотораспада используется методика, которая предусматривает быстрое удаление свободных радикалов путем быстрых вторичных реакций. В качестве ловушек свободных радикалов, которые полностью останавливают или замедляют обычные вторичные реакции промежуточных соединений, применяются различные химические соединения, которые очень реакционноспособны по отношению к свободным радикалам. Ниже описаны достоинства и недостатки подобных методик. [c.483]


    Уменьшение констант скорости во время реакции обмена можно объяснить протеканием вторичных реакций. Действительно, окись пропилена реагирует с образованием промежуточного соединения, которое затем медленнее омыляется. Это нужно учитывать при промышленном производстве и быстро удалять образовавшуюся окись пропилена из реакционного раствора [12]. [c.72]

    Однако возможен другой путь разложения молекул органических соединений, а именно радикально-цепной механизм распада молекул через свободные радикалы, при котором сначала, в первичной стадии процесса, образуются два свободных одновалентных радикала путем непосредственного разрыва простой связи. Затем радикалы, возникшие в первичной реакции, вступают во вторичные реакции с молекулами исходных веществ, радикалами и стенками, которые приводят к образованию конечных продуктов. В этом случае гамма получающихся конечных продуктов является следствием сложного многостадийного превращения, в котором участвуют промежуточные активные вещества в форме радикалов. Выход различных продуктов в сложном радикальноцепном превращении определяется соотношением скоростей конкурирующих между собой радикальных реакций, в которых радикалы появляются, заменяются или исчезают. Обыч-14 [c.14]

    Первичные органические соединения серы могут значительно изменяться в процессе нагревания нефтяных углеродов при более жестком режиме, чем при температуре их получения. Выделяющиеся сернистые соединения вступают в конкурентные реакции с углеродом и с металлоорганическими примесями [П2] с образованием новых, более стойких промежуточных соединений — вторичных органических соединений серы. Большинство исследователей считают, что вторичные сернистые соединения появляются в результате хемосорбции первичных сернистых соединений на поверхности коксов, полученных прн температурах ниже 800°С. В этом процессе важную роль играют свободные радикалы. [c.121]

    Приведенные нами наиболее вероятные схемы механизма и наличие вторичных реакций, в которые вступают промежуточные соединения, показывают, что состав продуктов реакции по необходимости должен быть очень сложным. Накопленный экспериментальный материал подтверждает рациональность этих схем. [c.308]

    Карбонильное соединение можно смешать с амином (или аммиаком) и восстанавливать непосредственно в смеси [96] или выделить и восстановить азометин I, если он стабилен [97]. Такой метод синтеза — один из лучших методов получения вторичных аминов из кетонов и первичных аминов. Реакция является общей, поскольку аммиак, первичные и вторичные амины (а также такие соединения, как нитропроизводные, восстановленные до аминов) можно подвергать восстановительному алкилированию как альдегидами, так и кетонами. Реакция с альдегидами и аммиаком или первичными ами-н ами может идти дальше, давая смесь первичных, вторичных и третичных аминов. При алкилировании вторичного амина промежуточно образуется диамин или енамин [c.483]


    Из вторичных и третичных бензиловых спиртов, а также из третичных алифатических спиртов можно нагреванием в ДМСО при 160—185° в течение 9—16 час получить соответствующие олефины с выходами 70—85% [173]. При нагревании указанных спиртов в отсутствие растворителя олефины не образуются. В процессе реакции в качестве промежуточного соединения образуется сольватиро-ванный ион карбония или же происходит замещение и элиминирование, подобно тому как это наблюдается при дегидрогалогенировании в полярных апротонных растворителях. Циклогексанол, трет- [c.42]

    Миграция метильной группы может превратить первоначально образовавшийся вторичный ион карбония в более устойчивый третичный карбониевый ион такая перегруппировка действительно происходит, и из этога нового иона образуется значительное количество продукта. Если сравнить это изменение углеродного скелета с изменением, происходящим при дегидратации 3,3-диметилбутанола-2 (стр. 166), то возникает мысль о том, то эти различные реакции протекают через одно и то же промежуточное соединение. ] [c.190]

    Образование нефти непосредственно из СО2 и Н2О, из которых состояла материнская атмосфера Земли, термодинамически без фотосинтеза невозможно ( термодинамический аргумент). Теоретически более вероятна возможность образования нефти в земных глубинах взаимодействием воды с карбидами металлов. Единственное, но не убедительное доказательство этому, являющееся козырной картой сторонников неорганической концепции, - это нефтеподобная жидкость, получаемая в лабораторных условиях по карбидному синтезу, но принципиально отличающаяся по качеству от природной нефти (как, например, сливочное масло от маргарина). Кроме того, на наш взгляд, карбиды металлов могли образоваться в природе в результате взаимодействия карбидообразующих металлов с органическими веществами при термобарических условиях подземелья. В таком случае карбидный синтез углеводородов есть не что иное, как промежуточная каталитическая стадия (вторичная реакция) суммарного биогенного процесса рождения нефти. Ведь из теории катализа известно, что металлы (и не только металлы) - катализаторы ускоряют химические реакции, образуя с участниками химического процесса промежуточные химические соединения, но при этом не изменяя равновесия реакций (физико-химический аргумент). [c.64]

    Иммониевые ионы являются промежуточными соединениями и во многих других реакциях, в частности в реакции Манниха (1912 г.). В этой реакции вторичный амин, кетон (или другое енолизируемое карбонильное соединение) и альдегид (как правило, формальдегид) образуют Р-аминокетон. [c.383]

    Спирты также реагируют с аминами над скелетным никелем с образованием вторичных и третичных аминов. Третичные спирты с аминами не реагируют это послужило основанием для предположения, что первой стадией реакции является дегидрирование спирта по уравнению (15) до карбонильного соединения, которое затем реагирует с амином по уравнению (16), образуя промежуточное соединение, способное каталитически восстанавливаться до конечного продукта по уравнению (17). [c.121]

    Кондон и Матюшак поздйсе изучали конкурирующую реакцию пропилена с бензолом и изобутаном. Предполагая, что карбоний-ион изопропил является промежуточным соединением реакции, они определили, что этот вторичный карбоний-ион реагирует в 350 раз быстрее с бензолом, чем с изобутаном [86]. Следовательно, реакция карбоний-иона с бензолом в 350 раз быстрее, чем отрыв третичного водородного иона от парафина, реакция же последнего заканчивается менее чем за 0,002 сек. [c.437]

    Представленная в настоящей главе схема относительного обогащения водородом, конечно, не вскрывает деталей реакций, переводящих сапропелитовый материал в нефть или нефтеобразные вещества. Эта схема подчеркивает, однако, постепенность реакций превращения и совершенно отвергает как химически невозможный случай внезапного превращения сапропеля или его части в углеводороды, минуя различные промежуточные стадии. Отщепление углекислого газа и воды должно сопровождаться образованием на кратчайшее время очень активных соединений, которые вступают в разнообразные процессы взаимодействия, а поэтому начальная нефть должна иметь преимущественно ненасыщенную, полициклическую природу, и только вторичные реакции переводят это начальное вещество в настоящие ароматические и гибридные углеводороды, а также в метановые, особенно изометановые углеводороды, характерные для молодых, мало превращенных нефтей. Эти отношения видны также из постепенно меняющегося состава сапропеля и его производных, получающихся путем потери углекислого газа и воды. Полная потеря всего кислорода могла бы дать  [c.201]

    Дезактивация катализатора может также происходить в результате постепенного обволакивания поверхности его высокомолекулярными продуктами вторичных реакций, не десорбирующимися при температурах опыта (смолы, высокополимерные соединения). В дезактивации катализаторов играют большую роль также и процессы кумулирующего отравления—прогрессивное поражение активных центров следами ядов. Все это, выражаясь фигурально, нарушает нормальный обмен веществ —адсорбцию реагентов и десорбцию продуктов. Утомление катализаторов в силу тех или иных причин является процессом прогрессирующим, что сказывается реально на уменьшении выхода продуктов. Часто в многостадийных каталитических процессах утомление катализатора и понижение активности его влекут за собой и изменение функции катализатора, который становится неспособным проводить реакции до конца, а останавливает их на промежуточных стадиях (см. благоприятствующее отравление, стр. 69). [c.56]


    Предполагалось, что реакция заключается в дегидрировании вторичной спиртовой группы оксикислоты VIII и расщеплении образующейся р-кетокислоты, циклогексанонкарбоновои-2 кислоты. Однако оказалось, что при обработке щелочью при более низкой температуре окси-кислота VIII дает циклогексен-1-карбоновую-1 кислоту IX (транс-ог-шепление), которая, следовательно, может образовываться в качестве промежуточного соединения при высокотемпературном расщеплении. [c.67]

    Более сложно протекает восстановление в таких смесях, где могут происходить вторичные реакции между промежуточными соединениями шш между последними и исвосстаповлениыми сосдинепиями Во многих случаях таким способом можно получить продукты, труднодоступные при других УСЛОВИЯХ Наиболее характерным примером может служить восстановление карбонильных соединений в присутствии аммиака или аминов [33] В результате этой реакции образуютсн первичные, вторичные или третичные амины с произвольно выбранными радикатами. [c.34]

    Реакция может быть осуществлена также и со вторичными аминами. В этом случае промежуточным соединением, которое можно выделить, является оксимстильнос производное VII, так как основание Шиффа (VIII) образоваться не может. Отщепление ВОДЬ от оксиметилызого производною, (Происходящее пдд действием кислоты, дает непосредственно аммониевое основание IX. [c.181]

    Получение карбоксиалкилпроизводных фосфора (III) может быть осуществлено также взаимодействием первичных и вторичных фосфинов с алкилгалогенидами, содержащими карбоксильную группу, однако реакция протекает лишь в присутствии сильных оснований, таких, как щелочные металлы, их гидриды и амиды. Их роль заключается в образовании анионов кислот — промежуточных соединений в синтезе третичных фосфинов [149]. [c.84]

    В интервале температур 275...290°С происходит интенсивная дегидратация с образованием фурфурола, левулиновой и у-гидроксивалериа-новой кислот и других простых продуктов. Фурфурол при термической деструкции получается со значительно меньшим выходом, чем в условиях гидролиза пентозанов. В присутствии кислорода воздуха идут также окислительные реакции. При температурах около 310°С в результате вторичных реакций появляются ароматические соединения. При дальнейшем повышении температуры до 350°С наблюдается значительное увеличение числа парамагнитных центров, что указывает на дальнейшее развитие реакций гомолитического разрыва связей с образованием промежуточных свободных радикалов. Эти радикалы, вступая в реакции рекомбинации, участвуют в сложных процессах формирования структуры угля. Звенья уроновых кислот в составе гемицеллюлоз неустойчивы в условиях термической деструкции и легко претерпевают декарбоксилирование, а от звеньев 4-0-метил-0-глюкуроновой кислоты отщепляются метоксильные группы с образованием метанола. [c.359]

    Этот метод имеет большое значение для синтеза алкалоидов. Тетрагидроизохинолины образуются при конденсации р-арилэтил-аминов с карбонильными соединениями в кислой среде. Синтез тетрагидроизохинолинов по методу Пиктэ — Шпенглера можно рассматривать как частный случай реакции Манниха. Процесс протекает в равной степени хорошо как с первичными, так и с вторичными аминами. В соответствии с условиями реакции первоначально образуется имин (в случае вторичного амина — енамин), который далее под влиянием кислоты протонируется, и возникающее положительно заряженное промежуточное соединение подвергается внутримолекулярному электрофильному замещению. Как видно на примере соединения XIV, механизм этого процесса весьма сходен с механизмом реакции Бишлера — Напиральского, за исключением того, что конденсирующий агент не регенерируется на последней стадии (стр. 249). Благодаря такому сходству влияние заместителей в ароматическом кольце на скорость и направление циклизации в обоих случаях аналогично [35]. [c.251]

    Характерным для сульфидирования ПЭ, активированного ДБТД, является повышение эффективности сшивания. Если в системах ПЭ —сера на поперечную связь приходится 50—80 атомов серы, то в системах ПЭ — сера — ДБТД только 8—10 15]. Причиной этого является разное строение активных промежуточных соединений и неодинаковый характер их вторичных превращений. Если для подвесок типа RSSH (неактивированное сульфидирование) определяющим является бимолекулярный распад с участием близко расположенной связи С—П той же молекулы [см. (7) и (8)] или даже молекулярная реакция в циклическом переходном комплексе [см. (6)], то распад подвесок RS SB происходит мономолекулярно. Вследствие этого увеличива- [c.211]

    Лефтин и Кмейл [139] рассмотрели влияние строения растворенного вещества на скорость образования полосы при 3000 А в концентрированных растворах серной кислоты. Для того чтобы избежать вторичных реакций, обусловленных присутствием непрореагировавших или нерастворенных соединений, измерения были ограничены интервалом концентраций между 10 и 2- 10 з М. На рис. 47 показана суммарная временная зависимость концентрации соединений с полосой поглощения при 3000 А для различных типов предшественника при 25° в 98,3%-ной серной кислоте. Относительные скорости появления полосы зависели от строения предшественника в следующем порядке диен>олефин>спирт>пара-фин. Среди спиртов наблюдалась небольшая зависимость от строения третичный>вторичный>первичный. То, что образование этой полосы в случае олефина происходило не мгновенно, как можно было бы ожидать, если бы эта полоса была обусловлена алкильным карбониевым ионом, образованным протонированием двойной связи, было показано (рис. 48) для гексена-1 при промежуточных значениях кислотности. В 85%-ном растворе серной кислоты скорость реакции олефина оказалась довольно низкой и очень заметно возрастала при добавлении следов сильного окислителя (селеновая кислота), показывая, что в этом случае в образовании хромофора участвовал окислительный процесс. Эти наблюдения [c.90]

    О действии промоторов можно судить по I) механизму, которым действует промотор 2) условиям промотирования, 3) соотношениям между свойствами промотора и катализатора, специфичным для определенного типа реакции. Предложены различные объяснения механизма действия промоторов, но ни одно не принято как универсальное. Указывалось, что если катализатор действует благодаря способности давать промежуточные соединения, то промотор действует как вторичный катализатор, ускоряющий и образование и исследующее разложение промежуточного продукта, образующегося между катализатором и реагирующими веществами [55]. При разложении перекиси водорода солью железа, употребляемой в качестве катализатора, и солью меди, взятой в качестве промотора, катализатор образует промежуточное соединение НзРе04, причем соль меди ускоряет его образование и разложение. Кроме того, промотор не только ускоряет реакцию, но может действовать также как вещество, защищающее [21] катализатор. Если это наблюдается, то следует ожидать линейное изменение скорости реакции в присутствии промотора. Защитное действие промотора видно из способности препятствовать росту кристаллов катализатора вследствие очень равномерного распределения. Митташ и Рейнекке [202] доказали, что и - и у окись алюминия образуютсмешан- [c.362]

    Как уже указывалось, селективный перенос водорода на стадии образования димера нельзя объяснить одним лишь различием в устойчивости а-связей металл — углерод, обусловленным различием типов связанных с металлом атомов углерода (первичный, вторичный, третичный). В таком случае селективность может быть результатом различной способности мономера и димера к л-связыванню (стадия координирования). Можно предположить, что равновесие между алкильными и гидридными промежуточными соединениями устанавливается очень быстро (определяющей скорость процесса необратимой реакцией роста цепи является формальное внедрение молекулы мономера по связи металл — углерод). [c.170]


Смотреть страницы где упоминается термин Вторичные реакции промежуточные соединения: [c.55]    [c.228]    [c.339]    [c.217]    [c.353]    [c.10]    [c.349]    [c.186]    [c.124]    [c.448]    [c.264]    [c.321]    [c.207]    [c.115]    [c.164]    [c.153]    [c.464]    [c.80]    [c.80]    [c.153]    [c.464]    [c.293]    [c.53]   
Смотреть главы в:

Основы и применения фотохимии -> Вторичные реакции промежуточные соединения




ПОИСК





Смотрите так же термины и статьи:

Реакции вторичные

Реакции промежуточные

Соединения промежуточные



© 2024 chem21.info Реклама на сайте