Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция молекул

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Чистая перекись водорода, не содержащая соединений щелочного характера и следов тяжелых металлов, термически устойчива, а поэтому может быть разогнана и сконцентрирована. Чистая перекись водорода, совершенно лишенная пыли, при соприкосновении с каталитически неактивными стенками сосуда разлагается с чрезвычайно малой скоростью. Термическое разложение перекиси рассматривается как гетерогенная реакция, причем она может протекать даже на поверхности пылинок. Разложение перекиси обусловлено адсорбцией молекул Н2О2 стенками сосуда и поверхностью присутствующих пылинок. Термическое разложение перекиси во- [c.121]

    Адсорбция молекул, имеющих диполи, квадруполи и л-связи, весьма чувствительна к удалению с поверхности гидроксильных групп. При дегидратации поверхности силикагелей адсорбция воды, спиртов, эфира и других полярных веществ и также азота (молекула азота обладает большим квадрупольным моментом), непредельных и ароматических углеводородов резко уменьшается. На рис. ХУН1, 7 показано уменьшение адсорбции азота и постоянство адсорбции аргона, а также уменьшение теплоты адсорбции пара бензола при дегидратации поверхности силикагеля. [c.500]

    Адсорбция молекул моюще-диспергирующих присадок на углеродистых частицах в соответствии с теорией Дерягина, Ландау, Фервея и Овербека (теория ДЛФО) способствует более интенсивному протеканию совокупности процессов, результатом [c.214]

    Таким образом, принимая во внимание современные представления о напряженности средних циклов и полученный экспериментальный материал по их каталитическим преврашениям, можно сделать вывод, что внутримолекулярные реакции s- и Сб-дегидроциклизации с образованием бициклических углеводородов энергетически выгодны для 8—11-членных циклоалканов, поскольку при этом существенно уменьшается трансаннулярное напряжение. В случае конкурирующей реакции — реакции гидрогенолиза — главную роль играет, по-видимому, не напряженность в исходной молекуле, а напряжение, возникающее в переходном комплексе при адсорбции молекулы циклоалкана на поверхности катализатора [197]. Поэтому в общем случае нельзя считать выход н-алка-нов мерой реакционной способности циклоалканов. Это становится тем более очевидным, если учесть, что гидрогенолиз различных циклоалканов в присутствии Pt/ описывается разными кинетическими уравнениями [143, 151, 201, 202].  [c.159]


    Характер активных центров на поверхности металла зависит от его химической природы, способа обработки и чистоты. Необходимо подчеркнуть, что химический состав поверхности играет существенную роль в протекании поверхностных процессов, и при рассмотрении конкретных вопросов химмотологии в области поверхностных явлений следует вносить поправки на особенности химического строения адсорбента. Химическое строение металла подробно рассматривается металловедением [203]. Поверхность металлических деталей представляет собой комбинацию полярных активных участков и олеофильных участков, природа которых определяется в основном дисперсионными силами. Адсорбция молекул некоторых углеводородов, индуцирующих на металле большие дипольные моменты, может способствовать превращению поверхности из неполярной в полярную [204]. [c.181]

    В газовой фазе доля более напряженных конформаций, в том числе и некоторых г-конформаций для Сб-дегидроциклизации, тем меньше, чем выше их напряженность. Как уже указывалось (см. разд. 1.2), конформации одного вещества более или менее быстро переходят друг в друга, однако при постоянной температуре их соотношение не меняется. На поверхности катализатора из-за адсорбции молекулы могут оказаться временно зафиксированными в /"-конформации, т. е. при таком расположении главной углеводородной цепи, которое энергетически невыгодно, но зато пространственно наиболее благоприятно для образования переходного состояния. В то же время, чем более напряжена г-конформация, тем менее прочно ее фиксирование, короче продолжительность жизни на поверхности катализатора, а следовательно, меньше вероятность прореагировать. Соответственно, меньше будет предэкспоненциальный член уравнения Аррениуса. Если же при этом реакция идет ио нулевому порядку и энергии активации для Сб-дегидроциклизации разных углеводородов одинаковы, то между значениями энергии перехода от обычных к г-кон-формациям и выходами продуктов реакции должна быть антибатная зависимость. При сопоставлении таких энергий перехода, вычисленных А. Л. Либерманом из конформационных данных, с выходами циклопентанов при Сб-дегидроциклизации, найденными авторами книги экспериментально, действительно обнаружилась ожидаемая антибатная зависимость  [c.213]

    Ориентированная адсорбция незаряженных полярных или поляризуемых частиц на границе раздела фаз с образованием двойного электрического слоя в пределах одной фазы адсорбция молекул воды (рис. 106, э) на металле ориентация дипольных молекул у поверхности раздела жидкость —газ (рис. 106, и) — адсорбционный потенциал. [c.150]

    При адсорбции часто происходит образование водородной связи между молекулой адсорбата и соответствующими группами или ионами на поверхности адсорбента. Так, при адсорбции молекул воды, спиртов, эфиров, аминов и т. п. на адсорбентах, поверхность которых покрыта гидроксильными группами, например на силикагеле (высокополимерной кремнекислоте), в дополнение к неспецифическим дисперсионным, ориентационным и индукционным взаимодействиям происходит образование молекулярных комплексов с водородной связью. Такие более специфические взаимодействия проявляются также при адсорбции и других молекул с периферическим сосредоточением электронной плотности, например имеющих л-электронные связи, на поверхностях, [c.438]

    Однако, как было показано выше, вычисление потенциальной энергии адсорбированной молекулы представляет трудную задачу и может быть количественно выполнено лишь приближенно и только в простейших случаях. Тем не менее даже качественное рассмотрение адсорбции молекул яр но-статистическими методами представляет большой интерес, так как позволяет установить, от каких свойств молекул адсорбата и образующих адсорбент частиц зависят такие важные термодинамические характеристики адсорбционных систем, как дифференциальная работа и теплота адсорбции, константа равновесия в уравнении изотермы адсорбции и т. п. [c.507]

    Предполагая, что скорость рекомбинации отвечает бимолекулярной реакции, а скорость адсорбции молекул водорода (с одновременной диссоциацией и переходом в адсорбированные металлом атомы водорода) пропорциональна их объемной концентрации н можно написать, что [c.409]

    Область применимости уравнения (13.2) ограничена такими значениями толщины смачивающих пленок, когда их еще можно считать частью утончившейся жидкой фазы. При плохом смачивании (0о 9О°) на твердой поверхности образуется двухмерная адсорбционная фаза толщина, пленок не превышает монослоя. Здесь применимо другое выражение, вытекающее из уравнения Гиббса, связывающего величину адсорбции молекул (Г) с изменением межфазного натяжения (osi/) в зависимости от давления пара адсорбата р [45]  [c.218]

    Таким образом, учет конформационных взаимодействий, возникающих при адсорбции молекул на поверхности катализатора, позволяет более ясно представить строение переходных комплексов, образующихся в ходе гидрогенолиза циклобутанов. Следовательно, в зависимости от условий эксперимента и объектов исследования на каждом из изученных катализаторов в той или иной мере осуществляется и реберная, и плоскостная адсорбция. [c.119]


    Адсорбция молекул моюще-диспергирующих присадок на металлической поверхности определяет проявление собственно моющего действия вследствие образования двойного электрического слоя. Из числа моюще-диспергирующих присадок наибольшей адсорбционной способностью на металле обладают сукцинимиды (рис. 4.8). [c.213]

    Впервые влияние давления водорода на протекание гидрогенолиза пятичленного цикла было изучено в работе [144]. Хотя реакция идет с поглощением водорода, и, казалось бы, увеличение содержания водорода в зоне реакции должно быть благоприятным для ее протекания на Pt/ , а также на Ni/кизельгур, на самом деле с повышением давления водорода (до 2—5 МПа) степень превращения циклопентана уменьшается при данной постоянной температуре, но возрастает с повышением температуры при данном постоянном давлении водорода. Эта интересная закономерность объясняется, очевидно, тем, что водород способен блокировать поверхность катализатора, препятствуя адсорбции молекул углеводорода. [c.123]

    Выше было показано (см. стр. 499), какую важную роль играют гидроксильные группы на поверхности окислов в отношении адсорбции молекул, имеющих дипольиые и квадрупольные моменты или зг-электронные связи. Поэтому увеличение концентрации гидроксильных и других активных функциональных групп на поверхности адсорбента (гидратация поверхности окислов, окисление саж) увеличивает энергию адсорбции таких молекул, мало изменяя энергию адсорбции молекул с более симметричными электронными оболочками (благородные газы, ССи, насыщенные углеводороды). Наоборот, удаление таких активных функциональных групп (дегидроксилирование поверхности окислов, графитированне саж) снижает адсорбцию молекул, имеющих дипольиые к каад-рупольные моменты или и-электронные связи, мало изменяя адсорбцию молекул с более симметричными электронными оболочками. [c.503]

    Второй из указанных выше подходов учитывает взаимодействие между молекулами моющих присадок и уже образовавшимися углеродистыми отложениями в масле. В этом случае эффективность моющего действия определяется рядом процессов, протекающих в системе параллельно или последовательно. Одним из них является адсорбция молекул присадок на металлических поверхностях и создание на границе раздела фаз заряженного слоя, препятствующего образованию отложений. Одновременно с этим в объеме масла происходит взаимодействие молекул моюще-диспергирующих присадок с твердыми частицами в виде солюбилизации и диспергирования последних, что в конечном счете приводит к повышению коллоидной стабильности системы. В результате этого снижается интенсивность образования отложений, а следовательно, и загрязненность основных узлов и деталей двигателя 232, 233]. [c.220]

    Механизм такого процесса окисления можно представить схемой, приведенной на рис. 2.11. На стадии I происходит адсорбция молекулы кислорода на активном центре (обозначен звездочкой). Стадия II характеризуется превращением адсорбированной молекулы кислорода в поверхностный ион Ог и одновременным взаимодействием данной ячейки активатора с полярной молекулой углеводорода, дающего слабую водородную связь с поверхностью, в результате чего ослабляется связь водорода с углеводородным радикалом. На стадии III поверхностный ион кислорода соединяется с ядром водорода с разрывом связи Н—К. При этом образуются поверхностный комплекс [5 --ООН] и свободный радикал К, которые на стадии IV в [c.60]

    При этом ионные двойные слои на электродах всегда таковы, что э.д.с. электрохимического элемента соответствует суммарному процессу в этом элементе. Например, адсорбция полярных молекул на электродах изменяет контактный потенциал между электродами 1 2, но при этом изменяются и потенциалы ионного слоя на электродах ф1 и фг, так что э.д.с. остается той же, что и в отсутствие адсорбции молекул иа электродах. [c.536]

    По-видимому, в результате адсорбции таких молекул повышается число активных центров с электродонорными свойствами, на которых происходит каталитический гомолиз О—0-связи с образованием радикалов. Адсорбция молекул с электроноакцепторными свойствами, таких, как кислород, диоксид углерода, тетрацианэтилен, снижает иногда до нуля каталитическую активность поверхности оксида металла [330]. Аналогичное действие предварительной адсорбции тех или иных молекул проявляется и при окислении углеводорода с гетерогенным катализатором. Каталитическая активность оксида металла повы- [c.205]

    Например, при адсорбции молекул, обладающих дипольным моментом на графите, атомы углерода которого имеют поляризуемость 1, вклад индукционных сил в потенциальную энергию адсорбции составляет [c.494]

    Таким образом, можно сформулировать условия, ведущие к изменению смачивания водой твердых поверхностей. Влиять на вид изотерм П(/1) смачивающих пленок воды можно в основном за счет двух эффектов — зарядовых (Пе) и структурных (П ). Молекулярные силы, зависящие от спектральных характеристик воды и твердой подложки, мало чувствительны к составу водного раствора, температуре и заряду поверхностей. Поэтому для данной твердой подложки значения Пт практически постоянны. Влиять на структурные силы можно посредством трех факторов повышением концентрации электролита и температуры, что ведет к уменьшению структурного отталкивания, а также путем адсорбции молекул ПАВ, что изменяет характер взаимодействия молекул воды с твердой поверхностью. Ухудшение смачивания, необходимое для повышения эффективности флотации, достигается обычно путем адсорбции поногенных ПАВ. При этом важно, чтобы ПАВ избирательно адсорбировалось на одной из поверхностей пленки, придавая ей заряд, обратный по знаку заряду другой поверхности. В этом случае возникают силы электростатического притяжения (Пе<0), что сдвигает изотерму в область П-<0. Адсорбция ПАВ может приводить одновременно и к гидрофобизации твер- [c.217]

    Если поверхность обозначить через 5, то процесс адсорбции молекулы на поверхности можно записать следующим образом  [c.83]

    Адсорбция молекул-окислителей, например Н О, у которых связь с металлом осуществляется через атом кислорода, сопровождается обменом электронов в обратном направлении атом [c.30]

    На границе между раствором и вакуумом также возникает двойной слой за счет ориентирован юй адсорбции молекул, напрн- [c.26]

    Таким образом, рассматриваемый механизм принципиально близок к механизму Руни — Кемболла, хотя и отличается от последнего детализацией промежуточно адсорбированных структур. Как отмечалось выше [42— 45], водород считают необходимым компонентом протекания конфигурационной изомеризации, однако рассматриваемый механизм недостаточно убедительно обосновывает это утверждение. Действительно, если адсорбция и превращение цис-адсорбированной формы в транс-форму (стадии 1 и 2) являются медленными стадиями, то быстрая стадия (3) — гидрирование — могла бы, по-видимому, идти за счет водорода, образовавшегося при диссоциативной адсорбции молекулы. В таком случае не было бы необходимости подавать водород в зону реакции извне. [c.78]

    Важным фактором, определяющим эффективность моющего действия, является поверхностная активность присадок. При этом возможна адсорбция молекул моюще-диспергирующих присадок в мицеллярной форме на границе раздела с твердым телом (мицеллярная адсорбция или гетероадагуляция). [c.213]

    Поверхностное сопротивление может быть обусловлено также экранированием поверхности при адсорбции молекул поверхностно-ак-тивньгх веществ и другими факторами. [c.261]

    Щ Так, например, энергия адсорбции молекулы н-алкана, звеньями которой являются СНд и СИ,, при расположении оси молекулы параллельно поверхности графита (соответствующем минимальной потенциальной энергии всей молекулы) может быть выражена в виде суммы потенциальных энергий адсорбции этих звеньев. Она является поэтому линейной фунцией числа атомов углерода п  [c.492]

    Теплота диссоциации О двухатомной молекулы, находящейся в газе, обычно равна приблизительно 100 ккал/моль, теплота адсорбции молекулы д 10 шал1моль, а теплота адсорбции Р атома приблизительно равна 35 ккал1г-атом. Пользуясь законом Гесса, можно скомбинировать эти три величины так, чтобы получить интересующую нас величину —теплоту диссоциации молекулы на поверхности. Реакцию образования молекулы в объеме можно записать так  [c.83]

    Очевидно, что 1фо= 1фвода из-за адсорбции диполей воды и влияния адсорбции на электронный двойной слой на поверхности металла. Если предположить, что адсорбция молекул воды на различных металлах приводит к одинаковому, в первом приближении, изменению скачков потенциала на этих металлах, то их гальвани-потенциалы в жидком диэлектрике 1фвода и гфвода [c.535]

    После присоединения первого моля водорода смесь моноолефинов богата этилциклогексеном (отношение 3 1 для Р1—С и 9 1 для N1). Нет оснований ожидать селективности, если обе двойные связи идентичны однако тот факт, что среди начальных продуктов реакции не появляются насыщенные углеводороды, показывает, что двойная адсорбция молекулы маловероятна [521  [c.86]

    Рнс. 11. Сосуществование химической адсорС-ции атомов и физической адсорбции молекул кислорода на поверхности металла при низкой температуре  [c.30]

    После насыщения поверхности металла хемосорбированньш окислителем, что происходит обычно почти мгновенно и приводит к образованию монослоя окислителя, при низких температурах может иметь место и физическая адсорбция молекул окислителя за счет ван-дер-ваальсовых сил поверх хемосорбированного слоя (рис. И). [c.30]

    При поглощении следующих порций газа при более высоких давлениях интенсивность этих эффектов падаех, и преобладающее значение пр1-1обретают физические факторы. В последнем случае адсорбция молекул газа вызывается тем, что поверхностные атомы или ионы адсорбента создают в поверхностном слое силовое поле, в котором конденсация молекул окруноющего газа происходит значительно легче, чем в отсутствие поля. [c.372]


Смотреть страницы где упоминается термин Адсорбция молекул: [c.409]    [c.537]    [c.117]    [c.161]    [c.112]    [c.151]    [c.272]    [c.505]    [c.505]    [c.303]    [c.102]    [c.243]    [c.49]    [c.44]    [c.24]    [c.283]   
Лабораторный практикум по теоретической электрохимии (1979) -- [ c.17 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные силы и избирательность адсорбции органических молекул из водного раствора

Адсорбция азота площадь поперечного сечения молекул

Адсорбция без взаимодействия адсорбированных молекул

Адсорбция других молекул

Адсорбция других молекул, способных к специфическим взаимодействиям с катионами

Адсорбция и распределение молекул между двумя фазами

Адсорбция иа кремнеземе молекул органических

Адсорбция ионов и молекул

Адсорбция молекул неионогенных ПАВ на поверхности раздела водный раствор — углеродный материал

Адсорбция молекул с поворотной

Адсорбция молекул, влияние

Адсорбция молекулы в газовом состоянии

Адсорбция на неоднородной поверхности и учет взаимодействия адсорбированных молекул

Адсорбция на подвижных границах раздела. Уравнение Гиббса Поверхностно-активные и инактивные вещества. Адсорбция полярно-аполярных молекул

Адсорбция на слоях молекул

Адсорбция нейтральных молекул

Адсорбция некоторых других молекул

Адсорбция неорганических молекул

Адсорбция неполярных молекул

Адсорбция неполярных молекул на ионных кристаллах и проводниках

Адсорбция одноатомных молекул

Адсорбция органических молекул

Адсорбция органических молекул из растворов

Адсорбция органических соединений ориентация молекул

Адсорбция ориентация молекул

Адсорбция полимерных молекул на твердых и гладких поверхностях

Адсорбция полярных молекул

Адсорбция приходящейся на молекулу

Адсорбция с поверхностной подвижностью и взаимодействием адсорбированных молекул

Адсорбция серусодержащих молекул

Боровков, В. Б. Казанский. Исследование специфической адсорбции j органических молекул методом ЯМР среднего разрешения

Ван-дер-ваальсовская адсорбция ионизированных органических молекул из водных растворов слабых электролитов

Влияние адсорбции нейтральных молекул и органических катионов на кинетику электродных процессов (А. Н.Фрумкин)

Влияние адсорбции электроактивных частиц (молекул, ионов) на параметры осциллополярограмм

Влияние дегидратации поверхности на адсорбцию полярных молекул

Влияние ионизации и ассоциации молекул в растворе на их адсорбцию

Влияние на адсорбцию па границе раствор — газ строения и размера молекулы поверхностно-активного вещества. Правило Траубе

Влияние природы поверхности адсорбента н размера молекул адсорбата на форму изотерм адсорбции

Влияние специфической адсорбции ионов и молекул иа форму и параметры подпрограмм в методах с линейной и треугольной разверткой потенциала

Водорода нон, подвижность водорода молекула, адсорбция

Выражения для адсорбции молекул с поворотной изомерией

Высокая чувствительность термодинамических характеристик адсорбции (удерживания) на ГТС к геометрии молекул

Д у б и н и н, К- М. Н и к о л а е в, Н. С. И о л я к о в. Молекулярно-ситовое действие промышленных активных углей с различной микропористой структурой в статике и динамике адсорбции паров веществ с относительно крупными молекулами

Деформация молекул при адсорбции

Диссоциация молекулы при адсорбции

Дифильные молекулы, ориентация при адсорбции

Дифференциальная теплота адсорбции в молекуле

Зависимость адсорбции в системе жидкость — жидкость от строения молекулы ПАВ

Зависимость пограничного натяжения от потенциала и адсорбции ионов и молекул

Зависимость стандартного уменьшения дифференциальной мольной свободной энергии адсорбции от химической структуры молекул, адсорбированных из водного раствора

Изучение адсорбции молекул на металлах без носителя

Изучение адсорбции органических молекул

Исследование влияния длины углеводородной нспи молекул ПАВ на термодинамические параметры адсорбции и мицеллообразования в водных растворах

Локализованная адсорбция с взаимодействием адсорбированных молекул

Макромодели поверхностного слоя и влияние электрического поля на адсорбцию органических молекул

Модель ассоциации адсорбированных молекул, термодинамические характеристики адсорбции и двухмерные фазовые переходы

Молекулы теплота адсорбции

Молекулярная специфичность в физической адсорбции Йетс Возмущение, возникающее в твердых телах под влиянием адсорбированных молекул

Молекулярно-статистическая теория адсорбции при нулевом заполнении поверхности и полуэмпирическая теория межмолекулярных взаимодействий. Решение обратной задачи определение параметров структуры молекул из экспериментальных значений констант Генри

Молекулярно-статистическое выражение константы Генри для адсорбции цеолитами разных молекул

Неизвестный. О влиянии адсорбции молекул эфира на германии иа параметры центров поверхностной рекомбинации

Ограничение ассоциации адсорбированных молекул ПАВ при адсорбции их активными углями из мицеллярных растворов и вид изотерм адсорбции

Одновременная адсорбция различных молекул или атомов

Одновременная адсорбция различных молекул при физической А адсорбции

Определение инкрементов стандартного мольного уменьшения свободной энергии адсорбции элементов структуры и функциональных групп органических молекул по экспериментальным измерениям адсорбции из водных растворов

Оптические исследования адсорбции газовых молекул

Оптическое исследование адсорбции молекул

Особенности адсорбции цеолитами полярных и неполярных молекул

Особенности исследования спектральных проявлений сильной специфической адсорбции молекул кремнеземами

Особенности применения молекулярно-статистической теории к адсорбции молекул на ионных адсорбентах при малом (нулевом) заполнении

Правило Траубе вычисление работы адсорбции. Ориентация молекул в адсорбционных плёнках

Природа физической адсорбции молекул иа углеродных адсорбентах Взаимодействие неполярных молекул с неполярным адсорбентом

Проявление межмолекулярных взаимодействий адсорбат—адсорбат на однородной поверхности неспецифического адсорбента при адсорбции молекул разной природы

Равновесие в идеальном адсорбированном слое с участием многоцентровых молекул. Локализованная адсорбция

Расчет термодинамических характеристик адсорбции одноатомных молекул на графите

Расчет термодинамических характеристик адсорбции этана с учетом внутреннего вращения молекул

Роль адсорбции в ориентации молекул субстрата

Связь изменений спектральных характеристик валентных колебаний гидроксильных групп поверхности кремнезема с энергетическими характеристиками адсорбции молекул

Связь удерживаемых объемов и теплот адсорбции с природой поверхности и структурой адсорбирующихся молекул

Случай электростатической адсорбции—адсорбция полярных молекул

Трафит расчет термодинамических характеристик адсорбции одноатомных молекул

Характер адсорбционной связи и активация молекул при адсорбции

Энергия адсорбции простых неполярных молекул на неполярном адсорбенте

Энергия адсорбции сложных неполярных молекул на неполярном адсорбенте



© 2025 chem21.info Реклама на сайте