Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ФАЗОВО-АГРЕГАТНЫЕ СОСТОЯНИЯ И СВОЙСТВА ПОЛИМЕРОВ

    IV. Релаксационный спектр с несколькими стрелками де Ь твия й с учетом температурной зависимости собственных частот или времен жизни релаксаторов позволяет сразу ввести в рассмотрение принцип температурно-временной эквивалентности, который, в свою очередь, наиболее наглядно иллюстрирует природу релаксационных состояний полимеров. Понимание реальности трех физических (релаксационных) состояний, которые не являются ни фазовыми, ни агрегатными, дает ключ к пониманию практически всех механических, электрических и магнитных свойств полимеров, а значит, и к управлению ими. (Напомним, что стрелка действия была введена без конкретизации природы силового поля, в которое помещена система). В действительности можно говорить вообще обо всех физических свойствах, включая и те, которые связаны с фазовыми равновесиями и переходами [15, с. 176—270 22]. [c.73]


    Аморфное фазовое состояние полимеров характеризуется отсутствием дальнего порядка, флуктуационным ближним порядком в расположении молекул, устойчивость которого зависит от агрегатного состояния вещества, изотропией формы и физических свойств (т. е. Ил независимостью от направления), а также отсутствием четко выраженной температуры точки плавления. Для низкомолекулярных тел аморфному фазовому состоянию отвечает только жидкое агрегатное состояние, поскольку в твердом агрегатном состоянии они характеризуются трехмерным дальним порядком, т. е. образуют правильную кристаллическую решетку. Исключение составляют природные и синтетические смолы (природные смолы — канифоль, янтарь синтетические—фенолформальдегидные смолы с молекулярной массой 700—1000 и др.), а такл<е обычное силикатное стекло. Для смол и стекла переход из твердого агрегатного состояния в жидкое и обратный переход из жидкого в твердое протекает плавно. При этом изменений в структуре не происходит, так как в твердых и жидких стеклах наблюдается только ближний порядок расположения молекул. Такой постепенный переход из одного агрегатного состояния в другое без изменений в структуре, специфичный для аморфного фазового состояния, называют стеклованием, а аморфные твердые тела стеклообразными, или стеклами. [c.73]

    Известно, что вещества могут находиться в различных агрегатных состояниях. Агрегатные состояния определяются характером теплового движения молекул или атомов, из которых состоит вещество. Наиболее интенсивное тепловое движение характерно для газообразного агрегатного состояния, наименее интенсивное — для твердого состояния. Как правило, твердое состояние характеризуется также наиболее плотной упаковкой атомов или молекул, из которых состоит вещество. Жидкое состояние является промежуточным между газообразным и твердым состояниями. Далее будет показано, что представления о трех агрегатных состояниях недостаточны для характеристики свойств полимеров. Недостаточны для этого и представления о фазовом состоянии. [c.72]

    Именно поэтому, рассматривая механические свойства полимеров, целесообразно вместо фазово-агрегатных состояний говорить о деформационных состояниях как уже упоминалось, это эквивалент термина релаксационные состояния . Стеклообразное состояние относится как раз к категории деформационных. [c.80]


    ФАЗОВО-АГРЕГАТНЫЕ СОСТОЯНИЯ И СВОЙСТВА ПОЛИМЕРОВ [c.317]

    В соответствии с фазово-агрегатным состоянием полимеров находятся и их свойства. [c.129]

    Книга является первой попыткой систематизировать материал в области термомеханического анализа полимеров. Она содержит обпще сведения о термомеханических свойствах полимеров, изложение принципиальных основ рассматриваемого метода, анализ возможностей использования различных его разновидностей, конкретное применение для изучения фазово-агрегатных состояний полимеров и процессов, приводящих к их изменениям, а также отражает вопросы экспериментальной техники термомеханического анализа. [c.2]

    Для более полного понимания связи между строением и свойствами, необходимо рассмотреть фазовые и физические состояния полимеров, поскольку понятие агрегатного состояния не применимо к полимерам, которые не могут находиться ни в истинно твердом состоянии, ни в состоянии газа, их можно отнести к структурам конденсационного типа (см. гл. XIV). Для описания полимеров целесообразно использовать представления о фазовом состоянии вещества. Понятие фазы применяется здесь в структурном смысле и характеризуется порядком взаимного расположения молекул. В соответствии с этим любое вещество — низкомолекулярное и ВМС — находится в одном из трех фазовых состояний — кристаллическом, аморфном или газообразном (последнее для ВМС практически отсутствует). [c.296]

    Такая суперпозиция релаксационных и мезоморфных переходов вообще очень характерна для полимеров, и, как мы убедимся в гл. XV, отражает причину многообразия проявлений их свойств фазовые, агрегатные и релаксационные состояния могут весьма причудливым образом сочетаться. [c.313]

    Как видим, суперпозиция релаксационных состояний на фазово-агрегатные неизмеримо расширяет разнообразие термомеханических свойств полимеров, что было замечено уже на ранних стадиях их исследований, но не было правильно интерпретировано. [c.324]

    I. Возможность существования одного и того же полимера в разных агрегатных, фазовых и релаксационных состояниях, отчетливая взаимосвязь этих состояний, а также и возможность их разнообразных суперпозиций приводит к чрезвычайному разнообразию регулируемых термомеханических свойств полимеров, обеспечивающих их разнообразные применения в качестве материалов — причем не только заменителей , но и незаменимых. Эти возможности расширяются применением пластификаторов и наполнителей, влияющих на все типы состояний и переходов. [c.324]

    Кроме агрегатных и фазовых состояний у полимеров принято различать физические состояния. Аморфные полимеры могут существовать в трех физических состояниях стеклообразном, высокоэластическом и вязкотекучем, которые отличаются друг от друга рядом свойств, по изменению которых можно определить температуру взаимных переходов из одного состояния в другое и их зависимость от структуры и свойств полимера. [c.73]

    Отыскание адэкватных форм аналитического выражения связей между структурой и диэлектрическими свойствами вещества наталкивается на трудности расчета локального поля ц индуцированной поляризации, учета ближних и дальних сил, флуктуаций в статистическом ансамбле зарядов. В частности, одним из сложных вопросов является вопрос о соотношении макроскопического (т) и микроскопического (т ) времен релаксации. Как известно, т определяется из условия (ОтТ=1, где (От — частота приложенного поля, при которой фактор диэлектрических потерь е" достигает максимума, а зависимость диэлектрической проницаемости е от частоты претерпевает перегиб. Законность отождествления т и т не очевидна, так как различия между напряженностью внешнего и локального, действующего на молекулу, полей может составлять несколько порядков. Теоретические расчеты показали, однако, что отношение х 1% не выходит за пределы 0,67—1,0 [1]. Обосновывая с достаточной надежностью связь между молекулярными и макроскопическими характеристиками, существующие теории дипольной поляризации обеспечивают базу для дальнейшего развития диэлектрического метода изучения структуры вещества — установления структурно-релаксационных связей в условиях различных фазового и агрегатного состояний, температуры и давления. Особое значение это имеет для полимеров, в которых сложное молекулярное строение обусловливает сложный спектр релаксационных и структурных переходов, а следовательно, и многообразие физических и физико-химических свойств. [c.156]

    Здесь возникает естественный вопрос, как полимер в стеклообразном состоянии, обнаруживая механические свойства твердого тела, оказывается в то же время в жидком фазовом состоянии. Для ответа на этот вопрос необходимо учесть, что понятие о фазе является понятием чисто термодинамическим, в то время как представления об агрегатном состоянии основаны на рассмотрении нетермодинамических свойств, например таких, как собственный объем и форма и способность к их сохранению в тех или иных условиях. Поэтому нет ничего противоречивого в утверждении, что стеклообразный полимер, будучи твердым по агрегатному состоянию, по термодинамическим свойствам является жидкой фазой. [c.232]


    Технологический процесс литья под давлением связан с подводом и отводом тепла, поэтому большое значение имеют теплофизические свойства полимера. Они могут изменяться в зависимости от агрегатного и фазового состояния полимера. Величина и характер этих изменений зависят от соотношения аморфных и кристаллических фаз, наличия наполнителей, пластификаторов и других факторов. [c.10]

    Обобщен экспериментальный материал по термодинамике и кинетике фазовых и агрегатных переходов, реологическим, тепловым и другим свойствам полимеров. Предложен ряд новых количественных соотношений, позволяющих в простой и наглядной форме описать зависимость макроскопических характеристик полимеров в аморфном и кристаллическом состоянии от их молекулярных параметров. [c.2]

    Гибкость длинных цепных молекул, составляющих полимер, обеспечивает не только богатство морфологических структур кристаллических образований, наличие агрегатных и фазовых состояний, но и различные физические состояния аморфного полимера. Известны три таких состояния стеклообразное, высокоэластическое и вязкотекучее. Полимерный материал переходит из одного физического состояния в другое при изменении температуры, которая оказывает существенное влияние на запас тепловой энергии макромолекул. Так, при комнатной температуре полистирол и полиметилметакрилат являются хрупкими телами, напоминая по ряду свойств силикатное стекло , в то время как резина способна к очень большим обратимым деформациям. Даже идентичные по химическому строению полимерные материалы в зависимости от величины молекулярного веса при одной и той же температуре могут находиться в вязкотекучем, высокоэластическом или стеклообразном состоянии. [c.39]

    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    При рассмотрении закономерностей, определяющих разрушение полимеров, находящихся в различных состояниях, целесообразно учитывать, что агрегатные и фазовые состояния полимеров не отражают полностью все многообразные состояния, определяющие законы их механического разрушения. Жидкое фазовое состояние, например, включает одновременно три физических состояния полимера стеклообразное, высокоэластическое и вязкотекучее. Законы механического разрушения в разных физических состояниях существенно отличны друг от друга. Твердое агрегатное состояние объединяет как кристаллическое состояние, так и стеклообразное. Принципиальные различия механических свойств полимеров в аморфном и кристаллическом состояниях очевидны. Поэтому с точки зрения изучения прочности полимеров удобно различать следующие физические состояния жидкое, высокоэластическое и твердое. Последнее включает в себя как стеклообразное (жидкое), так и кристаллическое фазовые состояния. [c.229]

    Теплофизические свойства и структурные характеристики [91—93] определяют отнощение материала к нагреванию и охлаждению (коэффициенты тепло- и температуропроводности,, удельная теплоемкость и т. п.) и подчиняются законам, термодинамики и теплопередачи. Эти свойства характеризуются изменением объема полимеров при воздействии температурных полей (тепловое расширение и сжатие материалов), термомеханическими и структурными превращениями (агрегатные, физические и фазовые состояния и переходы, например плавление, стеклование и кристаллизация) и другими особенностями поведения полимеров при переработке. [c.189]

    Разумеется, этим не исчерпывается набор технических характеристик полимерных материалов, важных для выбора и оценки эксплуатационных свойств полимерных покрытий. В частности, важной характеристикой покрытия является твердость, т. е. сопротивление. материала проникновению посторонних тел. Твердость относится к объемно-поверхностным характеристикам (т. е. зависит от свойств как объемной, так и поверхностной части материала), поэтому ее зависимость от химической природы и структурных особенностей материала весьма сложна. В частности, твердость поли.меров зависит от агрегатного и фазового состояния (наибольшей твердостью обладают кристаллические полимеры, а в аморфном состоянии максимальной твердостью полимеры обладают ниже Гст), от гибкости полимерной цепи, характера надмолекулярных структур, частоты сетки (в случае пространственных полимеров) и других факторов. В целом всегда нетрудно предугадать направление изменения твердости при той или иной модификации поли.мера, но очень трудно предсказать степень такого изменения, т. е. абсолютные значения твердости. [c.55]

    В книге излагаются современные представления о химическом строении и надмолекулярной структуре полимеров, об их агрегатных, физических и фазовых состояниях. Рассматриваются термодинамика и кинетика высокоэластической деформации, механические свойства стеклообразных и кристаллических полимеров и их смесей, и реология расплавов полимеров. Обобщены закономерности прочности и динамической долговечности полимерных материалов. [c.2]

    Таким образом, независимо от агрегатного состояния аморфного полимера, от того, представляет ли он собой вязкотеку-чёе, высокоэластическое или стеклообразное тело, такой полимер всегда находится в одном и том же фазовом состоянии. Это фазовое состояние может быть только жидким, так как истинное твердое тело — кристаллическое, а газообразные высокомолекулярные соединения не существуют. При этом необходимо учесть, что жидкая фаза не обязательно связана с текучестью и легкой изменяемостью формы материала, а прежде всего с наличием определенной структуры, определенного комплекса термодинамических свойств. Несмотря на то что стеклообразный полимер по агрегатному состоянию —твердое вещество, с точки зрения термодинамики, он находится в жидкой фазе. [c.310]

    Межмолекулярное взаимодействие (высокая энергия когезии) оказывает решающее влияние на все свойства полимеров, делая последние резко отличающимися от низкомолекулярных соединений. Энергия когезии влияет на физическую структуру, на физические, физико-химические и химические свойства (химическую реакционную способность) полимеров. Межмолекулярное взаимодействие определяет агрегатное состояние из-за высокой энергии когезии у полимеров отсутствует газообразное состояние, и при нагревании они разлагаются. Межмолекулярное взаимодействие влияет на фазовое состояние полимеров, способствуя упорядочению макромолекул, в том числе кристаллизации, с образованием надмолекулярных структур различного типа (см. 5.3). Из-за высокой энергии когезии полимеры труднее растворяются, чем низкомолекулярные соединения, и для них труднее подбирать растворители (см. 7.1). Межмолекулярное взаимодействие делает полимеры химически менее реакционноспособными по сравнению с низкомолекулярными соединениями аналогичного химического строения, так как химическому реагенту для проникновения в массу полимера необходимо преодолеть энерг ию когезии. Внутримоле- [c.128]

    Структура полимеров в разных фазовых и агрегатных состояниях была достаточно подробно рассмотрена в части первой и гл. IV. Ее существенная особенность — разнообразие возможных конформаций макромолекул при упаковке цепей в разных конформациях получаются различные типы морфоз, образующих структурную иерархию, заканчивающуюся объ-емно-конденсированной системой или раствором — в обоих случаях большой одно- или мультикомпонентной системой, физические свойства или области переходов которой предопределены структурой самих макромолекул (конфигурационной информацией) и характером разных уровней надмолекулярной структурной организации. Физические свойства полимеров в разных состояниях не только предопределяют конкретные возможности их рациональных применений, но и — как вообще в физике — определяют выбор методов исследования, так как всегда существует более или менее сложные, прямые или непрямые, корреляции между структурой и всеми физическими свойствами. [c.317]

    Суперпозиция фазово-агрегатных и релаксационных состояний тоже приводит к появлению ряда сугубо полимерных физических и механических свойств. Наиболее характерный пример — кристаллизующиеся каучуки. Поскольку обычно температуры стеклования и размягчения лежат ниже температуры плавления, кристалло-аморфный полимер может существовать в виде взвеси кристаллитов, связанных в паракристаллическую сетку Хоземанна (в примере с взвесью кристаллитов простого вещества в стеклообразной матрице сетка отсутствовала) в стеклообразной или высокоэластической матрице. Поскольку температура текучести зависит от молекулярной массы и простого соответствия между ней и Тал нет, возможны ситуации, когда после размягчения аморфной матрицы полимер будет сохранять твердоподобие из-за высокой степени кристалличности типичный пример — линейный полиэтилен. [c.322]

    Вполне понятна природа фазово-агрегатных и релаксацион ных состояний полимеров и их сложные суперпозиции, приводящие к огромному разнообразию макроскопических свойств. В рамках этого понимания проблемы механики полимеров все-более приобретают количественный характер, хотя, как отмечал в ряде выступлений Кувшинский, бездумное сведение высокоэластичности к энтропийной силе по меньшей мере требуег дополнительных доказательств. [c.399]

    Характерно, что в современных теориях происхождения жизни вновь выплыло подобие модных когда-то осмотических клеток сейчас их называют протоклетками, полагают, что они отделены от питательной среды мембранной оболочкой и содержат все необходимые ингредиенты — нуклеотиды, полипептиды, липиды и полисахариды или их различные комбинации. Можно —и пора — поставить вопрос так какие суперпозиции различных фазовых, агрегатных и релаксационных состояний полимеров, внутри которых (состояний) возможны разнообразные переходы — и при учете особых свойств полимеров, лишь часть которых отражена в книге [268] —неживая система пре- вратится в живую — и обязательно ли для подобного рода опытов пользоваться естественным сырьем Примерно таким вопросом заканчивался очерк [5] и сейчас, когда физика полимеров сделала гигантский скачок вперед (точнее, она сейчас находится в состоянии этого скачка), а многие проблемы и перспективы прояснились, уместно вновь задать этот вопрос. [c.401]

    Анализ многочисленных данных позволяет считать, что взаимодействие наполнителей с полимерами значительно более заметно в случае аморфных полимеров, чем кристаллизующихся. С этой точки зрения интересно сопоставить свойства наполненных полимеров, имеющих одну и ту же -химическую природу, но различающихся по фазовому состоянию [151]. Для того чтобы выяснить, каковы особенности ограничивающего действия поверхности наполнителя на полимер, находящийся в разных агрегатных состояниях (в жидком и в твердом), были изучены сорбционные свойства твердых линейных кристаллизующихся полиуретанов, а также их расплавов. Для исследования были взяты образцы линейного полиуретана на основе олигодиэтиленгликольадипината с молекулярной массой 2000 и 2,4-толуилендиизоцианата, наполненные сажей ТМ-70 с удельной поверхностью 70—75 м /г и аэросилом с удельной поверхностью 175 м г. Содержание наполнителей составляло 1 5 и 20 масс. ч. на 100 масс. ч. полимера. Наполнители вводйли путем смешения на влльцах. [c.77]

    В историческом плане физике полимеров сильно не повезло. Если химия полимеров долго плелась в хвосте технологии, то физика до сравнительно недавнего времени исполняла служебную аналитическую роль при химии (пресловутое охарак-теризование полимеров). Четкие самостоятельные проблемы физика полимеров — как специальный раздел молекулярной физики и физики твердого тела — стала обретать в первой половине бО-х гг., когда в нее стали вторгаться чистые физики, а не переучившиеся химики (к числу коих относится даже такой бесспорный физик, как Флори недаром Нобелевскую пре-мню он получил по химии...). Первым из них был Терелл Хилл его монография Термодинамика малых систем открыла новый подход к фазовому дуализму полимеров из примитивного механического триединства каучуков и резин, объединяющих в себе свойства трех обычных агрегатных состояний, он превратился в молекулярно-физическую концепцию со своим специфическим статистико-механическим формализмом. Вкратце, суть его сводится к тому, что любое состояние полимера на фазовой плоскости или в фазовом пространстве определяется самостоятельными, хотя и взаимозависимыми вкладами отдельных макромолекул (малых систем по Хиллу) и ансамбля этих макромолекул (большой системы). [c.3]

    Для изготовления полимерной упаковки применяются полимеры, сополимеры и различные пластические массы на их основе (табл. 3.1) [1 2 6 8]. По происхождению полимеры и сополимеры делятся на природные (натуральные), синтетические и искусственные по составу основной цепи — на карбо-гетероцепные и элементоорганические по структуре макромолекул — на линейные, разветвленные, пространственные по методам синтеза — на полимеризацнонные и поликонденсационные по поведению при нагревании — на термопластичные (их свойства обратимо меняются) и термореактивные (свойства необратимо изменяются) по агрегатному состоянию — на твердые и жидкие по фазовому состоянию — на аморфные и кристаллические по деформативно-прочностным характеристикам — на жесткие (с модулем упругости при температуре 20 С свыше 1000 МПа), полуж ст-кие (с модулем упругости более 400 МПа), мягкие (с модулем упругости до "20 МПа, у которых обратимая деформация исчезает с замедленной скоростью), эластйки (с модулем упругости менее 20 МПа, у которых обратимая деформация исчезает с большой скоростью) [9]. [c.22]

    Соотношение химических и физических п.ревращений и их роль в изменении эксплуатационных свойств определяется как химическим составом, полимера, так и той надмолекулярной организацией, которая формируется при изготовлении изделия из термопластичного полимера по принятой технологии. Технически полезными свойствами термопластичные полимеры конструкционного на-теачения обладают, как правило, в твердом состоянии. Этому агрегатному состоянию могут соответствовать два фазовых состояния кристаллическое и аморфное. Гибкость длинных цепных макромолекул обеспечивает не только богатство морфологических структур кристаллических образований, наличие агрегатных и фазовых состояний. но и различные физические состояния аморфного полимера стеклообразное, высокоэластическое и вязкотекучее. При изменении температуры может происходить переход полимера из одного физического состояния в другое, что отражается как на кинетике химических [c.65]

    Свойства такого материала сильно зависят от его физической над- молекулярной структуры. Надмолекулярная структура свойственна всем полимерам, независимо от их агрегатного и фазового состояния. Причиной ее возникновения является соотношение сил внутри-и межмолекулярного взаимодействия цепей. Надмолекулярная структура полимеров представляет собой сложные, пространственно выделяемые агрегаты разных размеров и формы, созданные укладкой макромолекул определенным образом. В создании надмолекулярных структур проявляется фундаментальное свойство гибкой цепи — способность складываться в складки (фолды) или сворачиваться в клубки сами на себя . Подвижным структурным элементом при этом является сегмент. [c.32]

    Благодаря высокой молекулярной массе и длинноцепочечному строению макромолекул полимеры способны реализовать два фазовых (кристаллическое и аморфное) и два агрегатных (твердое и жидкое) состояппя. Газообразное состояние у них не реализуется, так как температура кипения, которая зависит от молекулярной массы, у полимеров оказывается выше, чем температура разложения (термодеструкция). В каждом из реализуемых состояний полимерные тела обладают особыми релаксационными свойствами. [c.40]

    Следует вообще заметить, что в последнее время в исследованиях полимеров, наряду с измерениями значений фр1зическпх свойств при условно выбранных температурах, важную роль приобретают методики, в которых эти значения фиксируются в виде кривых в ходе изменения состояний образца в динамическом термическом режиме при нагреве (реже — охлаждении) [8]. При такого рода — политермических — исследованиях в образце обнаруживаются закономерное изменение свойств, агрегатные и фазовые превращения полимер проходит последовате.гьно ряд состояний, характерных для определенного участка либо для всей температурной области его существования. Состояния эти, как правило, неравновесны степень неравновесности определяется природой, исходным состоянием и термической историей образца, значением температуры и скоростью ее изменения. [c.7]

    Если процесс разделения на фазы в данных условиях протекает медленно, то, изучая изменения термомеханических свойств во времени, можно наблюдать переход от ТМА-кривых, характерных для статистических сополимеров, к кривым, свойственным блоксо-полимерам. Уже этим определяется сложность ТМА-кривых рассматриваемых объектов. Нередко возникают также осложнения, вызванные разнообразными сочетаниями агрегатных и фазовых состояний микроучастков, различным расположением по температурной шкале точек переходов между этими состояниями, [c.187]


Смотреть страницы где упоминается термин ФАЗОВО-АГРЕГАТНЫЕ СОСТОЯНИЯ И СВОЙСТВА ПОЛИМЕРОВ: [c.242]    [c.410]    [c.15]    [c.73]    [c.242]    [c.174]   
Смотреть главы в:

Физика полимеров -> ФАЗОВО-АГРЕГАТНЫЕ СОСТОЯНИЯ И СВОЙСТВА ПОЛИМЕРОВ




ПОИСК





Смотрите так же термины и статьи:

Агрегатные состояния полимеров

Полимер три состояния

Свойства и состояние тел

Состояни агрегатные

Состояние агрегатное

Фазово-агрегатное состояние полимера

Фазовые состояния



© 2025 chem21.info Реклама на сайте