Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая и жидкостная хроматография

    Лекция 12. Аппаратурное оформление газовой и жидкостной хроматографии. Основные узлы хроматографов, детекторы, качественный и количественный анализ. [c.206]

    В первой части этого курса были рассмотрены различные по химической природе и геометрической структуре адсорбенты, применяемые в молекулярной газовой и жидкостной хроматографии от одноатомного адсорбента с однородной плоской поверхностью графитированная термическая сажа) до непористых и микропористых солей, кристаллических микропористых и аморфных оксидов (на примере кремнезема) и органических пористых полимеров, а также способы адсорбционного и химического модифицирования адсорбентов. При этом были рассмотрены химия поверхности и адсорбционные свойства этих адсорбентов — поверхностные химические реакции, газовая хроматография, изотермы и теплоты адсорбции и происходящие при модифицировании поверхности и адсорбции изменения в ИК спектрах. Уже из этой описательной части курса видно, что свойства системы газ — адсорбент в сильной степени зависят как от химии поверхности и структуры адсорбента, так и от природы и строения адсорбируемых молекул, а также от их концентрации и температуры системы. Приведенные экспериментальные данные позволили рассмотреть и классифицировать проявле- [c.126]


    В последнее время развивается новое направление— двумерная (тандемная) масс-спектрометрия (МС — МС, масс-спектрометр — масс-спектрометр). Метод включает ионизацию молекул и разделение по массам ионов, образующих масс-спектр, выбор из этого спектра определенного иона-предшественника и получение масс-спектра продуктов его фрагментации в результате мономолекулярного разложения мета-стабильных ионов с малым временем жизни ( Ю с) или в результате дальнейшего возбуждения иона-предшественника столкновениями с инертным газом. Получаемые спектры могут использоваться и для решения аналитических задач, и для идентификации отдельных соединений в сложных матрицах. По сравнению с сочетанием газовой и жидкостной хроматографии с масс-спектрометрией МС—МС имеет преимущество в селективности, чувствительности и скорости анализа. Наибольшее преимущество масс-спектрометри-ческого разделения компонентов смеси — менее строгие требования к летучести образцов. [c.756]

    В современных приборах для разделения методом газовой и жидкостной хроматографии — хроматографах— кроме колонок для разделения смеси имеется детектор для определения компонентов после разделения каким-либо неселективным методом. Например, применяют детекторы, в которых для определения компонентов смеси исполь-зуют такие физические свойства, как теплопроводность, электрическая проводимость, поглощение излучений, теплота сгорания и др. Таким образом, хроматограф является прибором, в котором осуществляется гибридный метод анализа. [c.321]

    С ПОМОЩЬЮ бумажной, колоночной, тонкослойной [83а], газовой и жидкостной хроматографии [84]. Например, рацемическую миндальную кислоту удалось разделить почти полностью колоночной хроматографией на крахмале [85]. Известно много примеров разделения газовой и жидкостной хроматографией на колонках с хиральными абсорбентами [86]. Такие колонки теперь выпускаются промышленностью, причем можно подобрать колонку для разделения энантиомеров определенных типов соединений [86а]. [c.160]

    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]


    В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную хроматографию, В газовой хроматографии подвижной фазой является газ. Газовая хроматография служит для разделения летучих веществ, к которым обычно относятся вещества с молекулярной массой приблизительно до 300, и термически стойких соединений. В жидкостной хроматографии подвижной фазой является жидкость. Она применяется для разделения нелетучих веществ с молекулярной массой от - 300 до 1000—2000, неорганических иоиов и термически нестойких соединений. Таким образом, газовая и жидкостная хроматография дополняют друг друга. [c.176]

    В процессе становления органическая геохимия использовала всю современную методологию своей предшественницы, т. е. молекулярный уровень исследований с определением не только структуры, но и пространственной конфигурации изучаемых молекул, а также все современные достижения аналитической и органической химии. Успехи органической геохимии связаны с широким применением наиболее современных методов анализа, таких, как высокоэффективная газовая и жидкостная хроматография, хромато-масс-спектрометрия с компьютерной обработкой данных (в том числе масс-фрагментография), спектры ЯМР на ядрах С. [c.3]

    Каковы особенности бумажной, газовой и жидкостной хроматографии и области их применения  [c.364]

    Разновидности хроматографии. В зависимости от агрегатного состояния подвижной фазы различают, соответственно, газовую и жидкостную хроматографию. Неподвижные фазы могут отличаться как по агрегатному состоянию (жидкость или твердое тело), так и по природе сорбционного взаимодействия с молекулами разделяемой смеси. Неподвижная фаза может концентрировать вещество на границе раздела фаз за счет адсорбции, удерживать вещество за счет хемосорбции, избирательно растворять компоненты смеси (абсорбция) она может иметь пористую структуру и поэтому задерживать одни растворенные в элюенте вещества и пропускать другие, в зависимости от их размеров и формы. [c.47]

    В принципе сходным с ЯМР-методом является метод с использованием газовой хроматографии [103]. Смесь энантиомеров, чистоту которых нужно определить, превращают в смесь двух диастереомеров с помощью оптически чистого реагента. Диастереомеры разделяют газовой хроматографией (разд. 4.11) и по площади пиков определяют их соотношение, а отсюда и соотношение исходных энантиомеров. Аналогичным образом и более широко применяется жидкостная хроматография высокого давления [104]. Кроме того, для определения оптической чистоты были использованы газовая и жидкостная хроматография на колонках с хиральными наполнителями [105]. [c.163]

    Член С определяется недостаточной скоростью массопереноса и возникающей вследствие этого не-равновесностью хроматографического процесса. Причинами этого могут быть медленная диффузия в неподвижной жидкой фазе, медленная адсорбция или десорбция с поверхности. В случае газо-жидкостной хроматографии постоянная С зависит от толщины неподвижного слоя жидкости, коэффициента диффузии растворенного вещества в этой жидкости и объема жидкости по сравнению с объемом подвижной фазы. Наибольщее влияние, по-видимому, оказывает толщина неподвижного слоя жидкости. Заметное повышение эффективности наблюдается на колонках с очень тонкими слоями жидкой фазы. Достижению равновесия способствует высокая температура и низкая вязкость растворителя. В общем случае зависимость ВЭТТ от V для газовой и жидкостной хроматографии имеет вид, представленный Яа рис. 28.5. [c.592]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]


    Большинство классов аппаратуры, используемой в лабораторных условиях, могут применяться и для промышленных измерений, однако они не удовлетворяют тем жестким требованиям, которые предъявляются к промышленным анализаторам. В качестве примеров можно привести абсорбционные спектрометры (для видимого, УФ- и ИК-диапазонов), рентгенофлуоресцентные спектрометры, а также газовые и жидкостные хроматографы. Зондовые сенсоры представлены рН-зондами, окислительно-восстановительными зондами (ОВЗ) и оптоволоконными датчиками. Последние разрабатываются для абсорбционных или люминесцентных измерений. [c.654]

    Если рацемическую смесь хроматографировать на колонке, заполненной хиральными веществами, энантиомеры должны про- дить с разными скоростями и, следовательно, их можно раз-Таким путем, например, миндальную кислоту разделяют колонке, заполненной крахмалом Можно использовать бу-колоночную, газовую и жидкостную хроматографию [c.61]

    Введение отдельного практикума по физическим и физико-химическим методам анализа в курс аналитической химии для сту-дентов-технологов подчеркивает ведущую роль этих методов в аналитической химии. Все большее число возможных принципов анализа реализуется в инструментальных методах, появляются узко специализированные приборы для анализа того или иного конкретного продукта, а также приборы для автоматического контроля химико-технологических процессов. Увеличивается число приборов, предназначенных для анализа комбинированными методами, например в газовых и жидкостных хроматографах применяются датчики, действие которых основано на самых разнообразных физических и физико-химических методах. Все это усложнило выбор методов анализа для практикума и поставило проблему рациональной последовательности подачи материала. [c.6]

    Использование жидкостной хроматографии обычно приводит к разделению соединений по классам с дальнейшей идентификацией индивидуальных компонентов в смеси с помощью-масс-спек-трометрии по пикам молекулярных ионов. В работах [215, 218— 220] даны примеры успешного применения метода для анализа нефтяных фракций. Комбинированием газовой и жидкостной хроматографии и масс-спектрометрии проведена идентификация поли-ядерных аренов и бензохинолинов [215]. Описан прибор, сочетающий хроматограф и масс-спектрометр с ионизацией продуктами распада [221]. [c.138]

    До конца 50-х годов промышленность не производила газовых и жидкостных хроматографов, и хроматографисты своими силами изготовляли и налаживали простейшие газо-хроматографнческие установки. Тем не менее первоначальные и наиболее оригинальные открытия, как, например, открытие Мартином и Джеймсом газо-жидкостной хроматографии, были сделаны именно с применением простейшей аппаратуры. [c.24]

    При высоких давлениях в несколько сот атмосфер (1 атм л л 0,1 МПа) наблюдается резкое уменьшение времени и объема удерживания, что позволяет хроматографировать высококипящие малолетучие вещества при пониженных температурах. Этот метод называется флюидной хроматоерафией и занимает промежуточное положение между газовой и жидкостной хроматографиями. Сложность аппаратуры и техники эксперимента послужили причиной ограниченного применения данного метода. [c.135]

    Перспективно применение Д для нанесения металлич. и оксидных покрытий на разл. подложки для разделения, очистки и анализа смесей разл. металлов (в виде их Д.) методами экстракции, газовой и жидкостной хроматографии, фракционной сублимации, зонной плавки н кристаллизации для легирования разл. материалов методом осаждения из газовой фазы в качестве катализаторов полимеризации и окисления, сдвигающих реагентов в спектроскопии ЯМР. Соед. дипивалоилметана и Се(1У) предложено использовать в качестве антидетонаторов моторного топлива. Наиб, доступные и дешевые-ацетилацетонаты металлов. [c.59]

    Благодаря быстрому развитию регистрационной газовой и жидкостной хроматографии появилась возможность разработки новых экспрессных методов определения качества нефтепродуктов. С помощью регистрационной газовой и жидкостной хроматографии можно быстро определять фракционный состав, температуру кристаллизации, давление насыщенных паров, содержание ароматических углеводородов, нафтеновых кислот и их солей, общей серы и сероводорода, суммы водорастворимых щелочных соединений, тетраэтилсвинца, фактических смол, йодное и люминоме-трическое число и др. Возможности применения хроматографических методов для быстрого анализа нефтепродуктов хорошо иллюстрируются работой [50]. Показано, что фракционный состав топлив может быть легко определен на отечественном газовом хроматографе Цвет-2 с пламенно-ионизационным детектором. Для бензинов и реактивных топлив применен режим линейного программирования температуры термостата колонок со скоростью 10 °С/мин. Анализ занимает 15—20 мин. [c.338]

    Создатель газовой К. х. и теоретич. основ метода-М. Голей. В газовой и жидкостной хроматографии полые капиллярные колонки предложены соотв. М. Голеем в 1957 и Г. Нота, Дж. Марино, В. Буопокоре, А. Баллио в 1970. [c.310]

    К широко применяют при определении микрокомпонен-тов в объектах окружающей среды, минер, сырье, металлах и сплавах, в-вах высокой чистоты. Наиб, распространение для анализа концентратов получили такие методы, как фотометрия, атомно-эмиссионный, атомно-абсорбционный, рентгенофлуоресцентный и нейтронно-активационный анализ, инверсионная вольтамперометрия. Орг. микрокомпоненты удобно определять газовой и жидкостной хроматографией, хромато-масс-спектрометрией. Для К. газообразующих микроэлементов широко применяют высокотемпературную экстракцию. [c.462]

    Современные газовые и жидкостные хроматографы - сложные приборы с автоматическим управлением, нередко - с микро-ЭВМ, которая планирует ход исследования и вьщает готовые результаты. Конечно, такое недоступно ни для домашней лаборатории, ни для кружка. Однако начинался этот способ анализа с простых приемов, которые доступны и начинающему химику. [c.155]

    В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид. СФХ объединила важные преимущества газовой и жидкостной хроматографии. Она особенно полезна для определения соединений, которые не определяются ни газовой, ни жидкостной хроматографией. Она применима ко всем веществам, которые, с одной стормзны, нелетучи или ве могут испаряться без разложения, а следовательно, не могут быть определены в ГХ. С другой стороны, это метод для соединений, которые напрямую нельзя определить и с помощью ЖХ, поскольку они не содержат функциональных групп и поэтому не могут давать сигнал в обычных спектроскопических или электрохимических детекторах для ЖХ. [c.298]

    СФХ также успешно сочетается с масс-спектрометрическим, ФПИК и атомно-эмиссионным детектированием. Благодаря природе подвижной фазы, используемой в СФХ (обычно это сверхкритический диоксид углерода, часто с добавками небольших количеств модификатора, например, метанола), требования к интерфейсу являются промежуточными между требованиями в случае газовой и жидкостной хроматографии. Поэтому существующие ГХ- и ЖХ-интерфейсы могут быть приспособлены с небольшими изменениями для успешной работы с различными типами спектроскопических детекторов. [c.635]

    Мы практически не останавливаемся на комбайнах, объединяющих сверхкритический хроматограф и масс-спектрометр. Отметим лишь, что по объему подвижной фазы (обычно СО2), выходящей их хроматографа, сверхкритическая хроматография занимает промежуточное положение между газовым и жидкостным хроматографами. Поэтому способы объединения сверх-критического хроматографа с масс-спектрометром аналогичны последним двум случаям, т.е. используют молекулярные сепараторы, прямой ввод выхода колонки в ионный источник (капиллярная колонка, хорошая дифференциальная откачка ионного источника), ленточный транспортер и даже термораспыление. [c.46]

    Относительный вклад каждого из отдельных факторов размывания пика зависит от природы хроматографической системы сравните уравнения Ван-Деемтера для газовой и жидкостной хроматографии. На практике следует учитывать, что в лучших конструкциях фоматографов внеколоночное размывание сводится к минимуму, например за счет уменьшения мертвого объема системы, а условия хроматографирования выб(фают так, чтобы Я была связана, главным образом, с одним или двумя основными факторами размывания полосы, в последнем случае они должны вносить примерно равный вклад. [c.281]

    Какова роль основных узлов в газовом и жидкостном хроматографах высокого давления Что общего и каковы гфннципиальиые отличия  [c.340]

    Более высокой термостойкостью обладает мелон — адсорбент, получаемый в результате полимеризации мелами-на, адсорбированного на поверхности геометрически однородного макропористого адсорбента силохрома С-80 [131]. Авторы установили, что мелон термостоек до 600° С, нерастворим в растворителях и может использоваться в газовой и жидкостной хроматографии. [c.22]

    Книга шведского ученого — одна из первь[х монографий, посвященных аналитическому определению оптических изомеров и их выделению в чистом виде. Рассмотрены газовый и жидкостной варианты хроматографии. Помимо собственно хроматографических методов (хиральная дериватизаиия соединений различных классов, хиральная газовая и жидкостная хроматография) освещены методы, используемые для изучения структуры оптических соединений и определения их степени чистоты. [c.4]

    Основные производители материалов для хиральной газовой и жидкостной хроматографии [c.255]


Библиография для Газовая и жидкостная хроматография: [c.210]    [c.245]    [c.333]    [c.109]    [c.454]   
Смотреть страницы где упоминается термин Газовая и жидкостная хроматография: [c.28]    [c.125]    [c.254]    [c.222]    [c.481]    [c.360]   
Смотреть главы в:

Физико-химические и биологические методы оценки качества лекарственных средств -> Газовая и жидкостная хроматография




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Жидкостная хроматография хроматографы

Хроматограф газовый

Хроматография газовая

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте