Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность характеристическая

    Б. В. Некрасов (1935), чтобы отразить влияние структуры внешних электронных оболочек атомов на свойства элементов во всех степенях окисления, рассматривает два различных случая анало гни. В одном из них элементы имеют одинаковые структуры при любой заданной степени окисления и называются полными аналогами. В другом случае одинаковость структур внешних оболочек распространяется лишь на некоторые отдельные степени окисления. Относящиеся сюда элементы называются неполными аналогами. В его варианте системы (с. 87) сплошными линиями соединены полные аналоги, крупным пунктиром — элементы, аналогичные при всех валентностях, кроме характеристической (равной номеру группы), мелким пунктиром — элементы, являющиеся аналогами только при характеристической валентности. [c.85]


Рис. 11. Характеристические частоты обертоиов валентного колебания С—Н, наблюдаемые в инфракрасных спектрах для углеводородов ра,зличыых структур. Область первого обертона 5600—6200 область второго обертона 8100—8800 см . Рис. 11. <a href="/info/5691">Характеристические частоты</a> обертоиов <a href="/info/2518">валентного колебания</a> С—Н, наблюдаемые в <a href="/info/99889">инфракрасных спектрах</a> для углеводородов ра,зличыых структур. <a href="/info/1679427">Область первого</a> обертона 5600—6200 <a href="/info/1679428">область второго</a> обертона 8100—8800 см .
    Если анализируемой системе сообщать достаточную энергию, то электроны атомов переходят в возбужденное состояние и примерно через 10 с спонтанно возвращаются на нижележащие энергетические орбитали с эмиссией избыточной энергии в виде дискретных и характеристических для каждого вида атомов электромагнитных колебаний в видимой, ультрафиолетовой или рентгеновской областях спектра. При этом спектры носят линейчатый характер. При возбуждении валентных (оптических) электронов свободных атомов излучаемые линии расположены в видимой и ультрафиолетовой областях спектра. При возбуждении электронов внутренних орбиталей атома излучаются кванты с более жесткой энергией (рентгеновское излучение). Линейчатые рентгеновские спектры могут быть получены при облучении анализируемого вещества электронами (рентгеноспектральный метод анализа или более жесткими, чем излучаемые, рентгеновскими квантами (рентгенофлуоресцентный метод анализа). [c.8]

    Атомно-абсорбционный метод основан на резонансном поглоще-нни характеристического излучения элемента его невозбужден-нымн атомами, находящимися в свободном состоянии, т. е. в состоянии атомного пара . В результате поглощения кванта света валентный электрон атома возбуждается и переходит па ближайший разрешенный энергетический уровень, а резонансное излучение, проходящее через плазму, ослабляется. Ослабление резонансного излучения элемента, падающего на плазму с интенсивностью /о, до интенсивности / для выходящего светового потока происходит по экспоненциальному закону, который идентичен закону Бугера — Ламберта — Бера  [c.48]

    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]


    Ароматические углеводороды дают сложные спектры в инфракрасной области. Характеристические частоты ИК-спектров поглощения представлены в работе [59, с. 40—41]. Особо важными для определения ароматических углеводородов в сложных смесях считают диапазон 1600—1610 см [61]. Согласно [60, с. 43—44], для определения ароматических углеводородов специфичны следующие диапазоны частот, соответствующих деформационным колебаниям Сар—Н, учитывающие тип замещения пять соседних атомов водорода отвечают диапазонам 750 и 700 см , четыре — 750 см , три — 780 см , два — 830 см->, один атом водорода — 880 см . Валентным колебаниям кратных связей Сар—Сар соответствуют частоты 1600, 1580, 1500 и 1450 см . Используя ИК-спектры, можно анализировать смеси изомеров как в ряду гомологов бензола, так и нафталина. [c.134]

    Имеющиеся в таблицах значения характеристических частот изменяются в довольно широком интервале. Например, область валентных колебаний двойной углерод-углеродной связи находится в пределах 1580—1680 см . Интервалы различных групп часто перекрываются. Широкий интервал варьирования частот затрудняет расшифровку спектра, однако знание закономерностей изменения [c.279]

    Успешное объяснение на основе этого рассмотрения кажущегося аномального положения сольватированного протона особенно интересно. Большинство изотопных эффектов с участием сольватированного протона согласуется с гипотезой, что эта частица существует в форме НзО , хотя известно, что менее прочно связанные молекулы воды дают частицы, такие, как НдО . Реакция Н3О+ с основанием А [обратное направление схемы (9)] приводит к потере трех валентных характеристических частот кислоты (около 2900 см ) и к возникновению одной характеристической частоты для кислоты Н — А [c.202]

    Графики (рис. 3—9) показывают наиболее употребительные характеристические полосы для парафинов, нафтенов, олефинов, ароматических соединений и смешанных непредельных углеводородов. Они в общем охватывают область от 600 до 2000 см . Полосы, относящиеся только к валентным колебаниям С—Н, представлены на даух графиках. На одном пз них (рис. 10) показаны основные частоты (от 2800 до 3300 см ) колебаний этого типа, на другом (рис. 11) — первый и второй обертоны этого колебания в областях от 5600 до 6200 см и от 8100 до 8800 см . [c.321]

    Характеристические частоты для непредельных соединений. На рис. 5 показаны характеристические частоты для ацетиленов, сопряженных диенов и алленов. Данные для двух типов ацетиленов взяты у Шеппарда [40]. Нужно отметить, что альфа-ацетилены имеют еще несколько характеристических частот, кроме частот валентных колебаний С—Н, показанных на рис. 10. Одна из них (2120 является валентной часто- [c.324]

    ИК-спектры. В ИК-спектрах исследованных соединений характеристической является полоса, вызываемая валентными колебаниями нитрильной группы. По сдвигу частот валентных колебаний нитрильной группы - v( N) можно судить об образовании комплексного соединения. Однако оказалось, что не во всех случаях ИК-спектры являются доказательными. Так, ИК-спектры (З-(н-бутокси)пропионитрила и его комплекса с хлоридом меди (II) оказались идентичны. [c.62]

    Проявление водородной связи в ИК-спектрах. При образовании водородного мостика А—Н---В происходит ослабление связи А—Н, в результате чего характеристичная частота валентного колебания А—Н уменьшается, наблюдается низкочастотный сдвиг, сопровождаемый обычно расширением полосы. В ИК-спектрах жидких карбоновых кислот и их паров, спектрах воды и им подобных ассоциированных жидкостей вместо узкой полосы характеристического колебания связи О—Н (3670 см" ) наблюдается полоса водородной связи шириной до нескольких сотен см", смещенная в область низ- [c.178]

    Целесообразно сначала рассмотреть ИК-спектр. В его центральной части бросается в глаза очень сильная (самая интенсивная в спектре) полоса с максимумом при 1720 см расположенная в области двойных связей и согласно сводкам характеристических частот, (см. П1) в точности соответствующая валентным колебаниям карбонильной группы. Это может быть прежде всего карбонильная группа кетонов или альдегидов, но в последнем случае должна была бы наблюдаться полоса валентных колебаний альдегидного водорода около 2720 см . Однако данный спектр не имеет такой полосы, и предположение о наличии в исследуемом веществе [c.216]

    Предполагаемая модель образования связи М—СО подразумевает некоторые следствия, которые могут быть проверены по колебательным спектрам и с помощью измерения межъядерных расстояний. Прежде всего, из общей теории метода МО следует, что заполнение разрыхляющих орбиталей всегда связано с уменьшением порядка связи. Изменение порядка связи можно заметить, сравнивая межъядерные расстояния, а также характеристики связи, относящиеся к ее прочности. Эффективный способ оценки прочности связи заключается в исследовании ИК-спектров, так как существует характеристическая частота валентных колебаний группы СО. Возрастание дативного взаимодействия должно сопровождаться увеличением расстояния С=0 и понижением частоты [c.216]


    Валентные частоты связей С — Н являются типичным примером характеристических частот, т. е. частот, связанных с определенным структурным элементом и лишь незначительно зависящих от строения остальной части молекулы. [c.490]

    Экспериментальные исследования большого числа веществ, в молекулы которых входят одни и те же группы атомов, показали, что независимо от различий в остальной части молекул одинаковые группы поглощают в достаточно строго определенном интервале частот. Эти частоты называют характеристическими. Характеристическими могут быть полосы, соответствующие как валентным, так и деформационным колебаниям. Характеристические полосы важнейших групп органических соединений приведены в табл. 13. [c.278]

    Характеристические частоты С—Н-групп (метильных, метиленовых и метиновых) находятся в областях 3000—2800 1400—1300 и около 700 см". Пики 2962 и 2872 см — симметричные и асимметричные колебания метильной группы, а пики 2926 и 2853 см — валентные колебания метиленовой группы. Метиновая группа СН имеет относительно слабую полосу поглощения при 2890 см , которая перекрывается интенсивными полосами поглощения метильной СНз-и метиленовой СНг-групп. [c.60]

    Валентные колебания водорода аминогрупп имеют несколько более низкие значения характеристических частот (3300—3500 см 1), причем сдвиг в низкочастотную область за счет образования (более слабых) водородных связей мень- ше — до 3100 см . Первичные аминогруппы NHa в отличие от вторичных NH дают два максимума поглощения, соответствующих симметричным и антисимметричным валентным колебаниям (рис. 1.6.). [c.13]

    Другая разновидность характеристических частот, весьма важных для определения строения органических молекул, — частоты валентных колебаний двойных и тройных связей. В группировках Х = и Х=У, где X и У — атомы С, О и Н, приведенные массы близки, но силовые постоянные существенно различаются в зависимости от числа связевых электронов ( кратности связей) и обнаруживают ясно выраженную зависимость от эффектов сопряжения, приводящих к уменьшению численных значений характеристических частот сопряженных кратных связей по сравнению с изолированными. Интенсивность соответствующих полос [c.15]

    Исследование ИК спектров болыиого числа органических соединений показало, что одни и те же функциональные группы, входящие в их состав, имеют практически одни и те же частоты колебаний. Такие группы отличаются определенной автономностью и ведут себя независимо от остальной части молекулы. Соответствующие им частоты колебания называют характеристическими (см. Приложение, табл. 1) и используют для индентификации функциональных групп. К таким колебаниям относятся, иапример, валентные колебания связей С=0 (1740—1720 см ), С=С (1680—1620 см- ), С-Н (3100—2850 см ). О—Н (3600— 3200 см ) и др. Сравнение полос поглощения (частот колебаний) исследуемого веи1,ества с полосами поглощения соединений, строение которых установлено ранее, позволяет определить структуру нового вещества. Особый интерес представляет область 1500—700 см в которой содержится большое число полос, отвечающих, в основном, деформационным и некоторым валентным колебаниям. Характер спектра в этом интервале частот существенно изменяется даже при небольших изме[1ениях в структуре соединений. Эта область называется областью отпечатков пальцев . [c.139]

    Кроме частот колебаний непосредственно самих кислородных групп, характеристическими иногда являются также и частоты колебания соседних с ними СН-связей, измененные благодаря взаимодействию например, валентные кoлeбaпиJ СН = связи в альдегидной группе СН=0 (2720 см ). Инфракрасное поглощение кислородных групп исчерпывающе рассмотрено Беллами [79], и нет необходимости приводить здесь подробное повторение этих данных. [c.146]

    Характеристические полосы для парафшюв. На рис. 3 показаны характеристические полосы, полученные на основании изучения инфракрасных спектров и спектров комбинационного рассеяния парафинов. Этот график построен главным образом по данным Мак-Мурри и Торнтона [30] и Шеппарда 140]. Валентные колебания С—Н показаны для СНд- и СНа-групп, чтобы подчеркнуть аналогию между спектрами комбинационного рассеяния и инфракрасными спектрами для этого типа колебаний. Нужно отметить, что деформационная частота С—Н как для метильной, так и для метиленовой грзшпы (около 1450 с.и—i) активна и в инфракрасном спектре, и в спектре комбинационного рассеяния. Деформационная частота связи G—Н, принадлежащей только метильной группе, наблюдается в инфракрасном спектре при 1375 см , а в спектре комбинационного рассеяния неактивна. [c.321]

    У. Укажите характеристические полосы (в см ) в ИК-спектре тетроловой кислоты для I) С , 2) С-Н, 3) С=0, 4) 0-Н валентных колебаний. а. 3300 г. 1750 б. 3000 д. 1680 в. 2100 е. Г450 [c.167]

    И Сэзерлэндом [8]. В инфракрасном спектре активны две валентные частоты С=С около 1600 и 1500 см . В спектре комбинационного рассеяния активна только первая из них. Другие характеристические частоты обусловлены преимущественно деформационными колебаниями водорода. Частоты от 900 до 650 см приписываются колебаниям, лежащим вне плоскости бензольного кольца. Некоторые из вих активны только в спектре комбинационного рассеяния, другие — только в инфракрасном спектре. Между 1700 и 2000 см в инфракрасном спектре наблюдается несколько полос. [c.326]

    Почти все характеристические полосы поглощения двойных сбязей размещаются в очень важном для структурного анализа центральном участке ИК-спектра (от 1500 до 2000 см ). В интервале частот 1640—1670 см" наблюдаются полосы валентных колебаний связей С=С, но невысокая интенсивность (или даже отсутствие) этих полос у некоторых непредельных соединений вынуждает использовать косвенные критерии наличия двойных углеродных связей — полосы валентных и деформационных колебаний групп =С—Н и =СНг(см. рис. 1.7). Сопряжение связей С=С приводит к снижению частот на 30—40 см" и резкому повышению интенсивности поглощения. Пониженные частоты имеют и валентные колебания полуторных связей ароматических колец, которые приводят к появлению трех (иногда двух) полос переменной интенсивности в длинноволновом конце рассматриваемого участка спектра — при 1500, 1580 и 1600 см" (рис. 1.8). Коротковолновый конец этого участка, (1650—2000 см 1) часто используелся для определения числа и положения заместителей в бензольных кольцах. Здесь находятся слабые полосы оберто- [c.15]

    Характеристические частоты валентных колебаний углерод-водород-ных связей. Основные части вадантного типа колебаний связей углерод-водород обсуждались Фоксом и Мартином [16] в 1940 г. [c.329]

    Пример 3. Соединение нейтрального характера реагирует со щелочами при нагревании с образованием соли и летучего органического вещества. Качественные реакции на азот, серу и галогены отрицательные. В коротковолновой части (у > 2500 см ) ИК-спектра (рис. 1.13) имеются только полосы валентных колебаний водорода насыщенных радикалов (между 2800 и 3000 см ). Очень слабая широкая полоса при частоте 3500 см — вероятнее всего примесь воды (или спиртов), второй слабый максимум при 3450 см" — обертон очень сильной полосы при 1730 см" -. Следовательно, вещество не содержит никаких группировок ОН (а также ЫН и 5Н, но они исключаются уже данными качественных реакций), не содержит водорода при тройных связях С=С, двойных связях С=С и С=0 или ароматических кольцах. Отсутствие этих фрагментов подтверждается также исследованием области частот 1500—2500 см , в которой имеется лишь полоса 1730 см . Эта очень сильная полоса точно соответствует частоте валентных колебаний карбонила в нескольких классах органических веществ (см. таблицу характеристических частот в конце книги), но с учетом указанных химических свойств ее следует приписать сложноэфирной группировке (лактоны, имеющие те же частоты валентных колебаний С=0, не образуют летучих веществ при реакции со щелочами ангидриды карбоновых кислот имеюг в этой области две полосы и также не образуют летучих веществ при действии щелочей). Не исключена, однако, возможность одновременного присутствия кетонной группы (второго карбонила) и (или) группировки С—О—С простых эфиров. Таким образом, исследуемое вещество скорее всего является сложным эфиром какой-то кислоты предельного или [c.25]

    Кроме того, Добратц, пользуясь известными данными характеристических частот колебаний V и 6 валентных связей углерода с галоидами, азотом и серой, составил таблицу коэффициентов уравнения (84), которая позволяет рассчитывать теплоемкость паров практически всех органи-честчпх соединений, содержащих указанные элементы (табл. 16). [c.27]

    Для количественного исследования микроструктуры полиизо--пренов в настоящее время используются главным образом ИК- и ЯМР-спектры полимеров (рис. 1, 2). Метод ИКС особенно удобен для определения 1,2- и 3,4-присоединений. В этом случае анализ ведется по интенсивным и хорошо разрешенным характеристическим полосам поглощения в области деформационных колебаний винильной и изопропенильной групп при 909 и 887 см". Раздельное определение цис- и транс-1,4-звеньев из-за специфики ИК-спектров полиизопренов проводят по нехарактеристическим полосам поглощения при частотах 595—570, 730—750, 840, ИЗО— 1150 или 1300—1330 см [3]. В области валентных колебаний группы С—Н для этой цели пригодна полоса асимметричных колебаний СНз-групп при 2965 см . Точность известных методов анализа 1,4-полиизопренов по ИК-спектрам из-за малой интенсивности указанных полос, значительного наложения их друг на друга и сдвига частот максимумов поглощения в результате внутримолекулярных взаимодействий цис- и транс-1,4-структур невысока и, как правило, не превышает 2—5%- [c.201]

    По фотоэлектронному спектру Is линии углерода с участком спектра, соответствующего спектру характеристических потерь энергии электронов (потери в области энергий до 40eV) можно определить энергии возбуждения коллективных (плазменных) колебаний и одночастичных (межзонных и экситонных) переходов. Используя преобразование Крамерса-Кронига можно выделить из функции потерь спектр одночастичных возбуждений, который является комбинированной плотностью состояний (свертка валентной зоны с зоной проводимости). Спектр одночастичных возбуждений в линейно-цепочечном углероде имеет узкий пик экситонного поглощения, интенсивность которого напрямую связана с качеством кристалла (с отсутствием межцепочечных сшивок). [c.202]

    В различных молекулах могут содержаться одни и те же группы (функциональные), которые имеют практически одни и те же частоты в ИК-спектрах. Такие частоты называются характеристически.] /. К ним относятся, паприМ1 р, валентные колебания связей С = 0 (1740—1720 см- ), С--=С (1(380—1620 см" ), С—Н (3000— 2850 см" ), О — Н (3600—3200 с г ) н др. Сравнение полос погло-щенпя (частот колебании) исследуемого вещества с таковыми со-едпненнн, строение которых установлено ранее, позволяет определить структуру нового соедннения. В качестве примера рассмотрим ИК-снектр ацетона (рис, 8). [c.34]

    У. Какая из характеристических полос в ИК-спектре бензилиденацетона относится и валентным колебаниям карбонильной грушш  [c.124]

    Характеристические полосы в длинноволновой части спектра (области отпечатков пальцев X > 7 мкм) при отсутствии дополнительной информации обычно не могут служить убедительным доказательством наличия соответствующих группировок. В этой сложной области спектра, как правило, много полос скелетных колебаний с широкими диапазонами частот, накладывающихся на характеристические полосы галогенов, треха омных групп СНг, NO2, SO2, деформационных колебаний водорода при двойных связях и кольцах ароматических и гетероароматических соединений. В таких условиях полезным дополнительным критерием при отнесении полос может быть высокая интенсивность некоторых характеристических полос (валентных колебаний NO2, SO2, 5=0, G—О, N—О), но почти всегда необходимы дополнительные сведения о происхождении, составе и структуре исследуемого вещества. Обнаружение полосы в данном диапазоне Частот само по себе еще не может служить достаточным основанием для ее однозначного отнесения. Предполагаемое отнесение спектральной полосы должно быть подтверждено наличием в спектре других характеристических полос данного структурного фрагмента. Так, например, наличие максимумов поглощения на участке 1500—1600 см еще не доказывает, что исследуемое вещество относится к ароматическим соединениям. Этот вывод можно сделать только при одновременном присутствии в спектре полос, которые могут быть приписаны валентным и деформационным колебаниям водородных атомов бензольных колец (см. рис, 1.8), а также характерного для каждого типа замещения слабого поглощения на участке 1650—2000 см" . Совокупность всех этих признаков не только подтверждает [c.19]


Смотреть страницы где упоминается термин Валентность характеристическая: [c.142]    [c.255]    [c.323]    [c.327]    [c.23]    [c.30]    [c.55]    [c.202]    [c.491]    [c.298]   
Учебник общей химии (1981) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Характеристические частоты полос поглощения кетонов, не обусловленных валентными колебаниями

Характеристические частоты полос поглощения кетонов, не обусловленных валентными колебаниями Поглощение валентных колебаний С О у альдегидов



© 2025 chem21.info Реклама на сайте