Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Программирование температуры анализа

    Для определения количественного состава смеси используют хроматограммы, полученные при программировании температуры анализа. Расчет производят методом внутренней нормализации площадей, измеренных умножением высоты на полуширину пиков или интегратором, принимая чувствительность детектора одинаковой ко всем компонентам смеси. Усредненные результаты анализа представляют в таблице, по форме близкой к табл. IV.27. Заданный состав смеси, необходимый для оценки абсолютных и относительных погрешностей определения, сообщается студентам по выполнении ими эксперимента и расчетов. [c.318]


    Еще один пример показан на рис. 8.29. В данном случае разделяли водную фракцию летучих веществ, выделенных из облученного говяжьего фарша. Смесь выделили из водного раствора с помощью эфира, а концентрирование эфирного раствора проводили при температуре —80 °С. Концентрированный раствор испаряли и потоком газа-носителя вводили в колонку, имеющую температуру —10 °С, и выжидали выхода всего содержащегося в смеси эфира. Колонка в данном случае была соединена с масс-спектрометром с быстрой разверткой, благодаря чему идентификацию веществ, выходящих из колонки, проводили по получаемым масс-спектрам. По окончании выхода из колонки эфира начинали программирование температуры. Анализ данной смеси показал, что она состоит в основном из углеводородов алифатического ряда и небольших количеств других веществ. Углеводороды с семью и более атомами углерода в молекуле обнаружили в водной фракции перегонки, а углеводороды с меньшим числом атомов углерода в молекуле — в летучей фракции. [c.279]

    Для ускорения и повышения точности газохроматографического анализа применяют различные способы, цель которых — достижение максимальной равномерности разделения. В повседневной практике широко используются программирование температуры анализа и давления газа-носителя, сложные схемы разделения с переключением потоков, составные колонки, сорбенты и неподвижные жидкости. [c.28]

    Фракционный состав легких нефтяных фракций можно определять также хроматографическим методом [2, 3]. Разделение смесей проводится в колонке низкой эффективности длиной 1—4 м с неполярной жидкой фазой и линейным программированием температуры термостата колонки, т. е. с имитированием дистилляции. В указанных условиях разделения все компоненты смеси выводятся из колонки строго в порядке возрастания их температур кипения. Вследствие этого углеводороды, принадлежащие к разным классам, но имеющие одинаковые температуры кипения, выписываются одним пиком. Метод хроматографического анализа по сравнению с традиционными ректификационными методами имеет ряд преимуществ он позволяет наряду с фракционным составом смеси определять индивидуальный углеводородный состав бензиновых фракций, сокращает время анализа, уменьшает величину пробы, повышает надежность метода и позволяет использовать однотипную аппаратуру. [c.18]


    Основой для проведения химической типизации нефтей, как уже указывалось, является ГЖХ всей нефти, определяемая на капиллярных колонках эффективностью в 25—30 тыс. т.т. в режиме линейного программирования температуры. Экспериментальные подробности изложены в работе [8]. Проведение анализа целиком всей нефти позволяет избежать количественных неточностей, связанных обычно с выделением тех или иных фракций, и дает возможность определить неискаженные значения относительных концентраций важнейших реликтовых углеводородов нормальных (состава (С,2—Сзя) и изопреноидных алканов (состава 0,4—Сзл). Дополнительной характеристикой является определение группового состава основной фракции нефтей (так называемое тело нефти), т. е. фракции, выкипающей в пределах 200—430° С (н.Сц—н.Са )- [c.11]

    В качестве сорбентов использовали неорганические фазы. Так, смесь антрацена и фенантрена анализировали при 270°С на колонке, заполненной хлоридом кальция на хромосорбе или на ИНЗ-600 [79] смеси нафталина, бифенила, аценафтена, аценафтилена, флуорена, фенантрена, антрацена, пирена и флуорантена разделяли на оксиде алюминия, пропитанном раствором едкого натра и хлорида натрия [80] смесь нафталина, бифенила, фенантрена и терфенилов — на сульфате бария при 210—350°С [81]. Успешно проводится количественный анализ технических пе-ковых дистиллятов на хроматографе с пламенно-ионизационным детектором и программированием температуры в интервале 110— [c.137]

    Продолжительность анализа сокращается при программировании температуры. Например, повышение температуры колонки со скоростью всего 0,1°С/мин позволило сократить продолжительность анализа фракции углеводородов Сз—Сд на капиллярной колонке длиной 270 м более чем в 3 раза [71]. Одновременное программирование как температуры, так и скорости газа-носителя позволило провести анализ фракции углеводородов Сз—С12 на капиллярной колонке со скваланом длиной 61 м менее чем за 2 ч [72]. На хроматограмме получено около 240 пиков, 180 из них идентифицировано, причем идентифицированные углеводороды составляют 96—99. % образца. [c.118]

    В жидкостной хроматографии температура оказывает значительно меньшее действие, чем в газовой. В большинстве случаев анализ в ЖАХ проводят при комнатной температуре. Повышенные температуры применяют для увеличения скорости анализа, улучшения растворимости анализируемых веществ, а также в отдельных случаях для улучшения разделения. Программирование температуры применяют редко. [c.84]

    Итак, капиллярная хроматография не имеет конкурентов при анализе весьма малых количеств вещества. Она позволяет применять колонки значительной длины без существенного перепада давлений, легко осуществлять программирование температуры и значительно сокращать время анализа, приближаясь к экспрессному методу. Эффективность капиллярных колонок значительно выше насадочных. Эти достоинства капиллярной хроматографии позволяют применять ее для анализа многокомпонентных смесей. [c.203]

    Перечисленные особенности хроматографии с программированием температуры делают этот метод весьма эффективным для разделения и анализа сложных смесей. Однако следует иметь в виду, что возможности выбора неподвижных жидких фаз в хроматографии с программированием температуры ограничены, так как сравнительно небольшое число неподвижных жидких фаз имеет удовлетворительную термическую стабильность при тех высоких температурах, которые приходится применять при программировании. [c.90]

    Задание. Провести анализ пропан-пропиленовой или бутан-бутиленовой фракции в изотермическом режиме при ручном дозировании, а также применить программирование температуры и автоматическую дозировку пробы. [c.162]

    Термохимический детектор не термостатируется в связи с тем, что нагревательные элементы имеют относительно высокую температуру накала. Низкая чувствительность к скорости потока термохимического детектора позволяет применять его в режиме программирования температуры. Однако термохимически детектор не нашел широкого применения из-за следующих недостатков 1) применим только для анализа горючих веществ, следовательно, не позволяет использовать его в препаративных хроматографах, где требуется сохранить вещество 2) дает возможность определять концентрацию вещества в ограниченном интервале — от 0,1 до 5% 3) для горения [c.247]

    Элюируется высоко-кипящее вещество, оставшееся в колонке от предыдущей пробы 2) влага или другие примеси из газа-носителя, сконденсировавшиеся на холодной части начала колонки, выходят из нее во время анализа с программированием температуры (хроматограмма /) 3) пик воздуха (хроматограмма [c.268]

    Сравнение критериев разделения смесей углеводородов и чувствительности анализа при изотермическом режиме и режиме программирования температуры. [c.288]

    Р А Б О Т А 33. РАЗДЕЛЕНИЕ И АНАЛИЗ СМЕСЕЙ ЖИДКОСТЕЙ НА ХРОМАТОГРАФЕ ЦВЕТ-2-65 В РЕЖИМЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ТЕМПЕРАТУРЫ [c.243]


    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]

    В настоящее время известен метод с программированием газового потока , в котором в ходе элюирования непрерывно повышается скорость газа-носителя. Этот метод, так же как и программирование температуры, ведет к сокращению времени анализа. Комбинированием данных методов можно получить оптимальные условия проведения анализа. Для работы с программированием газового потока целесообразно применять капиллярные колонки. [c.370]

    В некоторых случаях, например при программировании температуры колонки, необходимо поддерживать постоянный расход газа-носителя через колонку, когда ее сопротивление изменяется в процессе анализа. Для этой цели используется регулятор расхода (рис. П.З). [c.14]

    Погрешность-скорости повышения температуры измеряется как разность между заданной и фактической скоростями. На точность количественного анализа с программированием температуры оказывает непосредственное влияние лишь та часть погрешности скорости, которая определяется случайными отклонениями от среднего значения (без систематической ошибки). Воспроизводимость скорости повышения температуры колонок может составлять несколько десятых долей процента от установленного значения. [c.79]

    Изменение температуры колонки в процессе анализа отрицательно влияет на стабильность газохроматографического режима. В литературе, описывающей достоинства и возможности газовой хроматографии с программированием температуры, недостаточно освещены трудности, сопровождающие практическую реализацию метода. Поэтому ниже приведен анализ дестабилизирующих факторов и описаны инструментальные средства, предназначенные для обеспечения устойчивости режима анализа с программированием температуры. [c.79]

    В режиме программирования температуры анализ начинается при температуре, достаточно низкой для эффективного разделения легких компонентов. В процессе анализа температура возрастает до максимальной, прн которой самые тяжелые компоненты выходят острыми, легко детектируемыми пиками. Обычно используют линейные скорости программирования от 1 до 20° С/мнн. Иногда применяют нелинейные (баллистические или экспонощнальные) и мультилннейные программы. [c.69]

    Газо-жидкостная радиохроматография свободных жирных кислот с программированием температуры. (Анализ к-т до Qe при программированном нагреве 100—200° НФ смесь ПДЭГА + Н3РО4 на хромосорбе W.) [c.54]

    Б предлагаемой лабораторной работе излагается методика газохроматографического анализа пищевого этилового спирта на содержание вредных примесей, ориентированная на использование насадочных колонок и режим программирования температуры. Анализ выполняется методом внутреннего стандарта, в качестве которого в принятых условиях удобно использовать вторичный гексиловый спирт (4-метилпентан-2-ол). Регистрация сигнала детектора и интерпретация результатов качественного и количественного газохроматографического анализа осуществляются с привлечением программно-аппаратного комплекса МультиХром . [c.540]

    Анализ деароматизированного бензина нроводили на газожидкостном хро.матографе Цвет-4 с линейным программированием температуры, на капиллярной колонке длиной 100 мм, диаметром О,.5 мм, неподвижная фаза — сква-лан, детектор — пламенно-ионизационный. Начальная температура анализа 50°, скорость подъема температуры 1°/мин. [c.203]

    Большую роль в повышении эффективности фракционирования слоншых смесей сыграло создание жидкостной хроматографии высокого давления (ЖХВД). Высокая скорость разделения, возмож ность реализации любого из отмеченных выше механизмов сорбции, применимость для разделения любых растворимых в элюенте соединений, независимо от их молекулярной массы, возможность непрерывного контроля элюирования с помош ью высокочувствительных детекторов, управления процессом разделения путем программирования температуры, скорости потока и состава элю-ента, автоматическая регистрация результатов обеспетали широчайшее распространение ШХВД для решения препаративных задач, количественного анализа и идентификации компонентов анализируемых смесей [109, 111, 122 и др.]. [c.17]

    Хроматограф позволял определять все изопарафнны от С4 до Сд включительно. На начальной стадии исследования была использована изотермическая колонка, поэтому анализы тяжелой фракции были менее точными, чем впоследствии, котда хроматограф работал в режиме программирования температуры. Это позволило во фракции Сд— 12 разделить и количественно определить до 18 углеводородов. [c.88]

    Характеристика алкилата, полученного в опытах с втор-бу-тилсульфатом. Алкилат, полученный из егор-бутилсульфата и изобутана, содержит те же изопарафины С5—Сд, что и продукт одностадийного (традиционного) алкилирования. Примерно одинаковые углеводороды входят и в состав тяжелой фракции (Сд и более высококипящих углеводородов). К сожалению, газохроматографические анализы отдельных проб давали заниженное содержание тяжелой фракции. Больщинство анализов проводили при постоянной температуре на двух колонках, вторая колонка предназначалась для анализа тяжелой фракции и давала ее содержание в алкилате 1—5%, в то время как по данным других анализов оно составляло 15—20% (эти анализы проводили в режиме программирования температуры и были подтверждены в аналитической лаборатории фирмы РЬНИрз Ре1го1еит). Результаты анализов фракции С5—Сд, проведенных при разных условиях, находились в близком соответствии. [c.104]

    Хроматографирование велось ва колонке 0,75x3 мм, на фазе хромосорб W -iW, с пламенно-иониаационном детектором. Объем пробы 0,03 мкл 20% раствора образца в хлороформе. Анализ проводили в режиме программирования, температура колонки изменялась от 210 до 320°С скорость ленты 0,85 см/мин. [c.69]

    Для анализа оснований, содержащихся в дизельных дистиллятах использовался также препаративный хроматограф Л ХМ-7А, модернизированный переключающим устройством на 10 ампул. Колонка из нержавеющей стали, длиной 6 м, внутренний диаметр — 8 мм. Неподвижной жидкой фазой служили синтетический каучук (СКТ) и лукопрен Ж-1000, нанесенные в количестве 15% на целит 503 (фракция 60—80 меш). Скорость газа-носителя гелия— 120 мл/- 1ин. Программирование температур o yщe твл lЛo ь в пределах 150—300 С со скоростью 1° в минуту. [c.74]

    Система хронато-масс-спектрометрии включала в себя следующие приборы хроматограф ЛХМ-7А колонка из нержавеющей стали длиной 6 м, внутренний диаметр —3 мм. Неподвижная жидкая аза полиэтиленгликоль — 20 тыс., нанесенный в количестве 7 % на целит-503. Скорость газа-носителя гелия —20мл/мин. Анализ проводили с программированием температуры от 100 да 200 "С со скоростью 2 градуса в минуту. Использовался молекулярный сепаратор на керамических фильтрах с коэффициентом обогащения 60. Масс-спектрометр типа 1306 был оборудован светолучевым осциллографом типа Н-117 и счетчиком ионов СИ-03, температура ионизационной камеры 250° 126]. [c.74]

    Для каждой области температур кипения анализируемых. веществ существует оптимальная пористость адсорбента для разделения низкокипящих, наиболее слабо сорбирующихся газов нужно использовать силикагели с высокой удельной поверхностью и средним диаметром пор не более 2 нм, для анализа углеводородных газов с температурой кипения не выше 10 °С — силикагели с диаметром пор 5—20 нм и для разделения более высококипящих углеводородов — соответственно более крупнопористые силикагели [36]. Модифицирование неоднородных крупнопористых силикагелей гидроксидом калия, поташом или силикатом калия приводит к уменьшению асимметрии пиков и повышению селективности разделения углеводородов j-С4 [37]. В качестве адсорбентов с полярной поверхностью, селективных по отношению к алкенам, используются также оксид алюминия [38] и цеолиты [39—40]. Полное разделение неуглеводородных компонентов газов нефтепереработки проведено на цеолите в режиме программирования температур 50—300°С [4.3]. [c.115]

    Реже применяется газоадсорбционная хроматография — для разделения отдельных групп жидких углеводородов. Так, крупнопо-ристые боросиликатные стекла (размер пор 3—5 нм) обеспечивают хорошее разделение алканов Се—Сю, а также смеси бензола, толуола, этилбензола и кумола [55]. На цеолитах типа X циклоалканы элюируются раньше алканов с тем же числом углеродных атомов, что было использовано для анализа деароматизированной бензиновой фракции методом газоадсорбционной хроматографии с программированием температуры в пределах от 200 до 450 °С [[56]. [c.116]

    Третья диаграмма (рис. Д.163, в) получена методом дифференциального термического анализа (ДТА). На рис. Д.164 показан принцип действия установки ДТА. В системе, которую можно нагревать с линейным программированием температуры, симметрично расположены три сосуда одинаковой вместимости. Один из них заполнен анализируемым веществом, два других — инертным веществом, не подвергающимся термическим превращениям (как правило, -АЬОз). В каждый сосуд введен термоэлемент. Термоэлемент, измеряющий температуру анализируемого вещества, соединен с термоэлементом, измеряющим температуру инертного вещества, таким образом, что термонапряжение гасится, если температуры их равны. При возникновении разности температур между пробой и инертным веществом соответствующую разность напряжений можно заметить по регистрирующему прибору. Одновременно можно зафиксировать температуру системы, которую третий термоэлемент преобразует в напряжение. [c.399]

    Универсальный газовый Цвет-6-69 . Разработан и выпускается Дзержинским филиалом ОКБА. Позволяет проводить качественный и количественный анализ органических и неорганических веществ определять их микропримеси анализировать смеси веществ, кипящих в широком диапазоне температур, в режиме программирования температуры колонки анализировать трудноразделяемые смеси на высокоэффективных колонках, агрессивные и неустойчивые соединения на стеклянных колонках, высокомолекулярные вещества, непереводимые в газовую фазу простым испарением (применяя пиролитическую приставку) выделять небольшие количества отдельных веществ (используя препаративную приставку). Пригоден для физико-химических измерений. Снабжен пятью детекторами дифференциальным пламенно-ионизационным с порогом чувствительности 1 10 % пламенно-ионизационным термоионным с порогом чувствительности Ы0 % электронного захвата с порогом чувствительности 1-10 % четырехплечевым катарометром с порогом чувствительности Ы0 % плотномером с порогом чувствительности 1 -10 %. Тип газовой схемы—двухколоночная с независимой установкой расходов газа-носителя.- Тип программатора температуры колонок — линейный с установкой скорости через 1 град мин. [c.255]

    Задание. Произвести количественный анализ смеси альдегидов кротонового, масляного, бензальдегида — методом газо-адсорбционной хроматографии на хроматографе ЬДвет-2-65 в режиме линейного программирования температуры. [c.244]

    Условия опыта. Искусственр1ая смесь состава ацетон (растворитель)—94,0, кротоновый альдегид — 2,2, масляный альдегид—1,8, бензальдегид — 2,0% (мае.). Длина колонки 200 см, внутренний диаметр 0,2 см. Адсорбент — термическая графитированная сажа (5уд = 8 м г). Температурная программа колонки от 100 до 250°С. Скорость программирования температуры 350 град/мин. Газ-носитель азот, его скорость 20 мл/мин. Детектор пламенно-ионизационный. Входное сопротивление 10 Ом. Скорость диаграммной ленты 4 см/мин. Время анализа 6 мин. Объем пробы 5 мкл. [c.244]


Смотреть страницы где упоминается термин Программирование температуры анализа: [c.551]    [c.36]    [c.91]    [c.326]    [c.88]    [c.155]    [c.153]    [c.154]    [c.219]   
Смотреть главы в:

Хроматография газов -> Программирование температуры анализа




ПОИСК





Смотрите так же термины и статьи:

Программирование



© 2024 chem21.info Реклама на сайте