Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые непредельные

    Н, т. е. можно считать, что транс-изомер присутствует в продукте (I) в количестве 75+10%. В цис-изомере протон группы СН имеет сдвиг б 6.02 м. д., т. е. занимает свое типичное положение. Как видно из спектра, при отсутствии сопряжения, но при наличии аллильного заместителя в карбоновых непредельных кислотах константа спинового взаимодействия вида 7jj уменьшается почти в два раза. [c.16]


    Непредельная кислота октадиен-3,5-карбоновая-1 изомеризуется горячей щелочью в 2,4-изомер [46]  [c.110]

    Предполагают, что спирты и кислоты образуют сложные эфиры. Кроме того, в конденсационно-полимеризационных процессах, имеющих здесь место, идет образование молекул с большим молекулярным весом и смолистых веществ. Химизм реакции образования таких соединений пока неясен. Частично. окисленные углеводороды, содержащие гидроксил, карбонил и группы карбоновой кислоты, как предельные, так и непредельные, могут взаимодействовать друг с другом. Конечные продукты этих реакций, очевидно, являются очень сложными. [c.71]

    Беззольные дитиофосфаты получают нейтрализацией дитиофос-фор ных кислот аминами взаимодействием дитиофосфорных кислот с амидами непредельных карбоновых кислот конденсацией диэфиров дитиофосфорных кислот с альдегидами и аминами. Присадки, полученные последним способом, отличаются более высокой стабильностью при повышенной температуре [35]. [c.164]

    Гидрирование жиров. Жиры животного и растительного происхождения состоят в основном из триглицеридов предельных и непредельных карбоновых кислот. В некоторых жирах встречаются эфиры высокомолекулярных жирных кислот и высокомолекулярных спиртов алифатического ряда. В качестве примесей могут быть соединения фосфора, азота и серы. [c.43]

    Непредельные карбоновые кислоты жирного ряда присоединяют водород только в присутствии катализатора, чем объясняются неудачи ранних попыток восстановления жидких растительных масел в твердые жиры. Низшие карбоновые кислоты гидрируются в присутствии N1 легко, но с нарастанием углеродной цепи скорость реакции снижается, хотя протекает быстрее, чем у ароматических кислот  [c.356]

    Избирательность была установлена и при гидрировании глицеридов непредельных карбоновых кислот или самих кислот. [c.391]

    Метиленовыми компонентами могут служить эфиры как насыщенных, так и а, -непредельных карбоновых кислот, например  [c.226]

    Исследованиями Н. А. Меншуткина было показано, что легче всего сложные эфиры получаются из первичных спиртов и низкомолекулярных кислот. Вторичные спирты реагируют труднее. Эфиры третичных спиртов получаются с небольшим выходом, так как третичные спирты в присутствии минеральных кислот легко отщепляют воду, превращаясь в непредельные углеводороды. На ход реакции оказывает влияние и строение карбоновой кислоты. Чем больше число и объем радикалов в а-положении по отношению к карбоксильной группе, тем меньше скорость этерификации. Если в ароматических кислотах заместитель находится в о-положении по отношению к карбоксильной группе, то этерификация также проходит медленно и с плохим выходом. [c.165]


    Образование нитрилов непредельных карбоновых кислот [c.87]

    По методу Буво — Блана в среде абсолютного спирта с использованием в качестве восстановителя металлического натрия спирты могут быть получены не только из альдегидов и кетонов, но также из эфиров карбоновых кислот, в том числе и непредельных  [c.205]

    Алюмогидрид лития восстанавливает как эфиры карбоновых кислот, так и сами карбоновые кислоты, в том числе непредельные и ароматические. [c.205]

    Эфиры непредельных карбоновых кислот (II—III) [c.323]

    Н2О Спирты (преимущественно первичные, циклические, непредельные и многоатомные), альдегиды, непредельные карбоновые кислоты [c.325]

    Жиры — это сложные эфиры трехатомного спирта глицерина и карбоновых кислот (предельных и непредельных), называются они глицеридами. [c.350]

    Лохте [118] и Ненитзеску (Nenitzesku) [116] выделили непредельное соединение — диметилмалеиновый ангидрид. Кроме того, Лохте обнаружил, что ароматические карбоновые кислоты также имеют место, хотя только в виде следов. [c.40]

    Карбоксилсодержащие бутадиеновые, изопреновые, бутадиен-стирольные, бутадиен-а-метилстирольные, бутадиен-нитрильные каучуки получают методом эмульсионной сополимеризации соответствующих мономеров с непредельными карбоновыми кислотами— акриловой, метакриловой, итаконовой, главным образом метакриловой кислотой при температуре полимеризации 5—60°С [1]. Наибольшее значение в практике приобрели каучуки, содержащие 1—2% метакриловой кислоты. В таких сополимерах одна карбоксильная группа приходится на 200—300 атомов углерода в главной цепи [1, 2]. Строение карбоксилсодержащего каучука, например, бутадиен-стирольного СКС-30-1, может быть изображено формулой  [c.397]

    В некоторых случаях непредельные углеводороды идентифицируют в виде дибромпроизводных. Для идентификации ароматических углеводородов окисляют их боковые цепи и исследуют образовавшиеся карбоновые кислоты. Многие ароматические углеводороды исследуют в виде характерных кристаллических производных пикриновой кислоты. К шестичленным нафтенам применяют реакцию пербромирования по Густавсону — Коновалову, а ко всем насыщенным —нитрование по Коновалову разбавленной кислотой в запаянных трубках. [c.90]

    Кислотная очистка заключается в обработке масла концентрированной серной кислотой и позволяет удалить асфальто-смолистые соединения и другие продукты окисления, а также компоненты, способствующие возникновению в масле этих продуктов, — непредельные углеводороды и часть ароматических, Серная кислота вступает в реакции с загрязнениями, имеющими наибольшую реакционную способность, — со смолами, ас-фальтенами, карбоновыми и оксикислотами, фенолами и другими веществами. Процесс химической очистки сопровождается физико-химическими явлениями, так как серная кислота для некоторых веществ — растворитель. [c.113]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, кор/поненты которой разделяются или идентифицируются лучще, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматограсЬических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводорсдов, селективно поглон1,ая их в реакторе с силикагелем, обработанным серной кислотой. Прп реакционной газовой хроматографии используются также реакции гидрирования и дегидрирования, этерификации (для анализа карбоновых кислот в виде эфиров), лиролиза высокомолекулярных соединений. [c.86]

    Глубокое превращение ундециленовой кислоты удалось осуществить Бедову, Петрову и Пустильниковой [58] при длительном нагревании ее (50 ч) в автоклаве с алюмосиликатным катализатором нри сравнительно низкой температуре (150° С). Эти условия процесса уже приближаются к обстановке геохимических превращений в глубине земных недр. Важно отметить, что углеводороды, полученные в качестве основных продуктов реакции из непредельной алифатической карбоновой кислоты, в основной своей части состояли из циклических форм. [c.325]

    Если рассматривать алифатические непредельные соединения как производные этилена, то влияние отдельных заместителей на способность двойной связи к присоединению карбоновых кислот можно представ1ггь данными, приведенными в табл. 3 [67а]. [c.16]

    Высшие непредельные карбоновые кислоты, например олеиновая, легко присоединяют окись углерода и водород и после восстановления дают оксиметилкарбоновтле кислоты. Однако последпие представляют смесь изомеров с различным положением оксиметильной группы [8]. О влиянии строения олефинов с разветв [енным углеродным скелетом на их поведение при реакции гидроформилирования см. гл. XI. [c.523]


    В. Керн и X. Внллерсинн [59] на примерах аутоксидации ряд ) эфиров непредельных жирных карбоновых кислот вывели общие закономерности. Экспериментально было показано, что такие аутокаталитические реакции протекают по радикально-цепному ме 1-низму, причем скорость реакции возрастает пропорционально ко-, п1честву поглощенного кислорода, т. е, концентрации образующейся перекиси. Получаюи иеся при разложении перекисей свободные радикалы являются началом зарождения углеводородных цепей. [c.236]

    В заключение этого раздела необходимо отметить роль катализа в генезисе нефтей. Интересные работы провели И. Д. Зелински с сотрудниками по выяснению механизма образования нефтей [28]. Ими было установлено, что самые разнообразные органические соединения в результате обработки их А1С1,., превращаются в углеводородные смеси, аналогичные по составу природной нефти. Состав искусственной нефти зависит от исходного вещества. Холестерин давал масло, богатое содержанием углеводородов с шестичленными циклами. Предельные жирные карбоновые кислоты—пальмитиновая и стеариновая—образовали много твердых парафинов непредельная олеиновая кислота, наоборот, превратИоЧась в очень сложную жидкую смесь предельных и непредельных, линейных и циклических углеводородов. Природные каучуки дали смесь парафиновых [c.334]

    Легче протекает гидрирование эфиров карбоновых кислот, например этилакрилат гидрируется над N1 при 180°. Примерно так же гидрируются эфиры высших непредельных жирных и жирно-ароматических (коричная) кислот. С N1 Ренея эфиры кислот гидрируются хорошо при 80°, с N1 на кизельгуре—при 125—160°. С. А. Фокин над Р1 впервые прогидрировал олеиновую кислоту в стеариновую, а затем непредельные двухосновные кислоты—мезаконовую, ита-коновую, цитраконовую, малеиновую, и фумаровую— в соответствующие предельные кислоты [41]. [c.356]

    Непредельные карбоновые кислоты, так же как углеводороды и другие соединения, гидрируются с различной скоростью и легкостью в зависимости от строения, числа заместителей, условий гидрирования и т. п. Как и в случае олефинов, скорость гидрирова- [c.356]

    В последнее время значительное применение получил новый некаталитический метод восстановления с помощью литийалюминий-гидрида ЫАШ . При нормальном давлении и в исключительно мягких условиях по Р. Нистрому и В. Брауну [84] восстанавливаются в спирты не только эфиры карбоновых кислот, но и сами карбоновые кислоты. Для таких реакций применяется аппаратура, аналогичная аппаратуре грнньяровских синтезов. В эфирный раствор Е1А1Н4 по каплям приливается эфирный раствор восстанавливаемого соединения. Реакцию удобно также вести в аппарате Сокслета. В этих условиях непредельные С=С-связи не гидрируются. Выходы предельных или непредельных спиртов составляют 90—95%. [c.404]

    Алкоголиз протекает легко при взбалтывании сложных эфиров предельных или непредельных карбоновых кислот при обычной температуре с 10-кратным количеством спирта с добавкой металлического калия или натрия. Особенно легко протекает переэтерифи-кация первичных алкокси-радикалов, в случае же вторичных и третичных спиртов необходимо нагревание. Аналогично проводится и алкоголиз сложных эфиров гликолей, причем с абсолютным спиртом в присутствии натрия получается 75—85% этиленгликоля  [c.545]

    Таким образом, в смеси ДКГ с олигомерными смолами наиболее вероятно сочетание катионной полимеризации непредельных соединений, олигомерных смол и дегидратационной поликонденсавди сульфо-и карбоновых кислот кислых гудронов. Общим признаком этих разных процессов является их каталитическая природа. Регулируя степень проникания процессов изменением температуры, концентрацией реагентов и добавками солей металлов, щелочей, можно изменить количество ионов катализаторов и сульфокислотных групп - активных центров поликонденсации. Указанные приемы дают возможность получать материалы с широким диапазоном реологических и физико-механичес-ких свойств. [c.48]

    Общие методы получения карбоновых кислот Окислетше алканов, первичных mipmoe и альдегидов. Гидролиз нитрилов. Через. четаллооргштческие соединения. Гидро-карбонилирование непредельных соединений. Окисление альдегидов окисью серебра 101 [c.5]

    Таким образом, реакция Перкина как метод получения а, -непредельных карбоновых кислот имеет более ограниченное применение, чем реакция Кнёвенагеля, которая проходит в более мягких условиях и допускает использование в качестве карбонильных компонентов алифатических альдегидов и кетонов. [c.225]

    Реакцию Кляйзена используют в препаративной практике для синтеза а,р-непредельных карбоновых кислот. [c.226]

    В зависимости от природы радикала, связанного с карбоксильной группой, карбоновые кислоты делятся на предельные и непредельные. Число карбоксильных групп определяет основность кислот кислоты с одной карбоксильной группой являются одноосновными, а с двумя — двухосновными и т. д. Кроме того, по количеству углеродных атомов в радикале различают кислоты низихие (низкомолекулярные) и высшие (высокомолекулярные). [c.140]

    Одноосновные непредельные кислоты содержат ненасыщенный углеводородный радикал, связанный с карбоксильной группой. Общая формула таких кислот (с одной двойной связью) имеет вид nHjn-i OOH. В молекуле ненасыщенных карбоновых кислот могут содержаться две и более этиленовых связей, а также тройная связь. Примерами таких кислот могут быть акриловая кислота СН2 = СН—СООН, метакриловая кислота СН2 = С(СНз)—СООН, кротоновая кислота СНз—СН = СН—СООН, пропиоловая кислота СН=С—СООН, а также высшие ненасыщенные кислоты (олеиновая, линолевая и линоленовая (см.с. 155). [c.151]

    Карбоновые кислоты. Строение карбоксильной группы. Одноосновные предельные кислоты. Изомерия и номенклатура. Физические и химические свойства. Индуктивный эффект. Функциональные пройзводные карбоновых кислот галогенангидриды, ангидриды, эфиры, амиды, гидропероксиды и пероксиды. Высшие жирные кислоты (ВЖК). Мыла. Одноосновные непредельные кислоты и их свойства. Двухосновные предельные и непредельные кислоты. Отдельные представители карбоновых кислот. УФ и ИК спектры карбоновых кислот. [c.170]

    Ароматические карбоновые кислоты. Классификация. Изомерия и номенклатура. Бензойная-кислота и ее производные. Хлористый бензоил. Антраниловая. л-аминобензойная, суль-фобензойкая и салициловая кислоты. Непредельные одноосновные кислоты. Многоосновные ароматические кислоты. Фталевая кислота и фталевый ангидрид. Лавсан. [c.171]

    Общая формула карбоновых кислот К—СООН. В зависимости от характера радикалов, связанных с карбоксильной группой, )азличают предельные и непредельные карбоновые кислоты. Число карбоксильных групп определяет основность карбоновых кислот (с одной группой — одноосновные, с двумя — двухосновные и т. д.). [c.96]

    Из приведенных - рассуждений можно заключить, что неизвестное соединение СдНаОг представляет собой ароматическую непредельную карбоновую кислоту с одной из шести альтернативных формул  [c.223]

    Карбоновые кислоты. Органические соединения, содержащие карбоксильные группы —СООН, называют карбоновыми кислотами. По числу карбоксильных групп в молекуле карбоновые кислоты делят на одно-, двух-, трех- и многоосновные (поликарбоновые) по характеру радикала, связанного с карбоксилом, — на предельные (содержат радикал алкана), непредельные (содержат радикал алкена или алкина). Общая формула предельных одноосновных карбоновых кислот С Н2 +1С00Н. Кислоты, содержащие до пяти атомов углерода, — жидкие вещества, более пяти —твердые не растворимые в воде вещества. [c.263]

    Напишите структурную формулу простейшей непредельной однооснов ной карбоновой кислоты и уравнение реакции взаимодействия этой кислоты с метиловым спиртом. Составьте схему полимеризации образовавшегося при этом продукта. [c.408]


Смотреть страницы где упоминается термин Карбоновые непредельные: [c.257]    [c.151]    [c.188]    [c.577]    [c.247]    [c.196]    [c.314]   
Начала органической химии Книга первая (1969) -- [ c.335 , c.361 ]




ПОИСК







© 2025 chem21.info Реклама на сайте