Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Извлечение и очистка меди

    Электрохимическое выделение металлов из водных растворов их соединений лежит в основе гидроэлектрометаллургических процессов, т. е. процессов извлечения металлов из руд (электроэкстракция) и их очистки (рафинирование) при помощи электролиза. Гидроэлектрометаллургическим путем получают и очищают такие металлы, как медь, никель, цинк, кадмий, олово, свинец, серебро, золото, марганец и др. Гидроэлектрометаллургия позволяет получать [c.452]


    Активный ил богат азотом, фосфором, микроэлементами (медь, молибден, цинк). После термической обработки его можно использовать как удобрение. Но необходимо учитывать и возможные отрицательные последствия его применения в связи с наличием солей тяжелых металлов и т. п. Извлечение ионов тяжелых металлов и других вредных веществ из сточных вод гарантирует получение безвредной биомассы, которую можно использовать в качестве кормовой добавки или удобрения. В случае образования больших объемов осадков сточных вод, содержащих соли тяжелых металлов, целесообразно сжигание осадков. В ФРГ предложен способ получения заменителей нефти и каменного угля на основе активного ила. Подсчитано, что количество тепла, получаемое при сжигании 350 тыс. т активного ила, эквивалентно его количеству, получаемому при сжигании 350 тыс. баррелей нефти и 175 тыс. т угля. Ведутся поиски и других путей утилизации осадков и активного ила, образующихся при очистке сточных вод. [c.110]

    Гидрометаллургия в основном сводится к двум важнейшим операциям первая имеет целью получить водный раствор природных руд, т. е. раствор солей данного металла, и по возможности освободить его от примесей (например, приготовление растворов солей меди, цинка, серебра, золота) вторая операция состоит в выделении из раствора чистого металла или его соединения, которое далее подвергается пирометаллургической обработке. Так, для получения чистого золота из золотоносного песка последний обрабатывают раствором цианистого калия при этом золото переходит в раствор в виде комплексного цианистого соединения из раствора цианистого соединения золото извлекается восстановлением его металлическим цинком. Таким же путем получают серебро. Так же производится и аффинаж (очистка) платиновых металлов, производимый исключительно химическим путем, а также извлечение олова из старой жести хлором. [c.229]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]


    Ионообменная очистка применяется для извлечения из сточных вод металлов (цинка, меди, хрома, никеля, свинца, ртути, кадмия, ванадия, марганца и др), а также соединений мышьяка, фосфора, цианистых [c.83]

    В области цветной металлургии электролиз используется как для извлечения ряда металлов из руд (меди, цинка, кадмия и др.), так и для рафинирования цветных металлов, выплавленных в печах. Почти всю добываемую медь, значительную часть никеля, свинца, серебра и золота подвергают электролитической очистке. [c.4]

    В осадках производственных сточных вод этих предприятий содержится большое количество ценных веществ. Так, например, на каждую тонну вискозного волокна в сток переходит до 0,5 т серной кислоты и 0,2 т едкого натра, а на 1 т медноаммиачного волокна — до 300—400 кг меди. В шламе вискозных или кордно-штапельных волокон содержится до 15% цинка. При промывке 1 т овечьей шерсти в сточные воды, а затем в осадки переходит 100—250 кг ценного шерстного жира и др. Все эти потери ценных примесей могут быть утилизированы, что важно не только для экономики предприятия, но и для улучшения и удешевления очистки сточных вод. Ниже приводятся примеры извлечения и использования ценных отходов некоторых предприятий легкой промышленности. [c.160]

    Извлечение и очистка меди [c.227]

    Серебро получают также в качестве побочного продукта при рафинировании меди и свинца. Шлам после электролитической очистки меди можно обработать простыми химическими методами для извлечения содержащихся в нем серебра и золота. Небольшое количество серебра, содержащееся в сыром свинце, извлекают остроумным способом, так называемым методом Паркса. При этом в расплавленный свинец добавляют небольшое количество (около 1%) цинка. Жидкий цинк нерастворим в жидком свинце,, а растворимость серебра в жидком цинке приблизительно в 3000 раз превышает растворимость в жидком свинце. Следовательно, ббльшая часть серебра растворится в цинке. Цинко-серебряная фаза после перемешивания всплывает понижая температуру, ей дают затвердеть, а затем отделяют. Цинк можно отогнать, а серебро останется в перегонном аппарате. Содержащееся в свинце золото также извлекают этим методом. [c.480]

    Получение. Около 80 % С. извлекается попутно из полиметаллических руд, руд золота и меди. Для извлечения С. из серебряных и золотых руд его растворяют в щелочном растворе цианида натрия затем выделяют его из растворов комплексных цианидов восстановлением цинком или алюминием. Из медных руд С. выплавляют вместе с черновой медью, а затем выделяют его из анодного шлама, образующегося при электролитической очистке меди. Нитрат С. получают путем растворения С. в азотной кислоте и последующей очистки. [c.82]

    Очистка сточных вод сводится к освобождению их от окиси меди и целлюлозы путем отстаивания и фильтрования, а также к извлечению растворенной меди методом катионного обмена. [c.408]

    Способы вытеснения [1, 2, 7 ]. Один из них — цементация — получил распространение не только для очистки растворов от нежелательных компонентов (стр. 241), но и для извлечения металлов из разбавленных растворов (например, золота, иногда меди и др.). [c.244]

    Для переработки бедных алюминием отработанных анодных сплавов, получаемых в последнее время, пригодны только кислотные методы. Применявшиеся раньше [3] щелочные методы разложения анодных сплавов (выщелачивание раствором едкого натра) дают удовлетворительное извлечение только в применении к сплавам, содержащим 25—30% алюминия. Разлагать сплав можно как выщелачиванием измельченного сплава серной или соляной кислотой, так и анодным растворением [3]. В раствор наряду с галлием и алюминием переходят также железо и частично (за счет окисления кислородом воздуха) медь. Так как железо осаждается купферроном, в этом случае применять для выделения галлия купферрон невыгодно, и перерабатывают растворы экстракционным путем, используя бутилацетат или трибутилфосфат. Если разложение велось серной кислотой, к раствору добавляется соответствующее количество хлорида натрия. Чтобы отделить железо, раствор перед экстракцией обрабатывают каким-либо восстановителем, например железной стружкой. Для реэкстракции галлия из органического слоя последний промывают водой. После экстракции следует очистка от примесей молибдена и олова осаждением сернистым натрием и, наконец, электролиз щелочного раствора галлата с целью получения металлического галлия. [c.257]

    Гидроэлектрометаллургический способ включает стадии выщелачивания, очистки и извлечения меди нз раствора электроэкстракцией или цементацией. Показатели процесса электроэкстракции даны ниже  [c.314]

    Раствор, направляемый на очистку, перерабатывается двумя способами. Первый способ заключается в утилизации меди и кислоты, содержащихся в растворе, и извлечении сульфата никеля, второй —8 выделении электролизом меди и электроположительных примесей и затем кристаллизации сульфата никеля. [c.187]

    Вельц-оксиды вместе с газами поступают на фильтры и направляются далее на выщелачивание и очистку. Продукты выщелачивания оксидов — кек я раствор — используются следующим образом кек поступает на извлечение свинца и других компонентов, а раствор возвращается в производство цинка после предварительной очистки от меди, которую перерабатывают вместе с другими медьсодержащими продуктами. Клинкер направляют для переработки на медеплавильные заводы. [c.387]


    Современная техника предъявляет большие требования к чистоте материалов, в частности металлов. В цветной металлургии для очистки металлов от примесей широко применяют электролиз с растворимым анодом. Электролитическому рафинированию подвергают железо, медь, серебро, золото, свинец, олово, никель и другие металлы. Например, медь рафинируют следующим образом. В электролизер, заполненный раствором сернокислой меди, подкисленной серной кислотой, помещаются аноды из черновой меди (предварительно подвергнутой горячему рафинированию, при котором окисляется большая часть примесей). Между ними подвешивают катоды из тонких листов тщательно очищенной меди. Напряжение на ванне поддерживают в пределах 0,20—0,40 в, так чтобы при прохождении тока медь, а также примеси с более низким потенциалом, чем у меди (N1, Ре, 2п и др.), окислялись на аноде и переходили в раствор. Остальные примеси с более высокими потенциалами по сравнению с потенциалом меди не окисляются и ыпадают в виде осадка на дно ванны. Это анодный шлам. Он идет на переработку для извлечения золота, серебра, селена, теллура, что в значительной степени оправдывает большие затраты электроэнергии на рафинирование меди. На катоде восстанавливаются только ионы Сц2. Содержание Си в катодной меди достигает 99,98%, а в особых условиях—99,995%. [c.214]

    В настоящее время жидкостная экстракция применяется в химической технологии, гидрометаллургии и аналитической химии для извлечения, разделения, концентрирования и очистки веществ. Экстракционные процессы используются в производствах органических продуктов, антибиотиков, пищевых продуктов, редкоземельных элементов, ряда редких, цветных и благородных металлов (примерно три четверти мирового производства меди получают методом реактивной экстракции из водных растворов), в технологии ядерного горючего, при очистке сточных вод. [c.1105]

    В Советском Союзе и США для очистки сточных вод нефтехимических комбинатов, заводов искусственного волокна и других химических предприятий разработано несколько сравнительно недорогих и эффективных методов флотационного выделения детергентов, извлечения жидких продуктов и других всплывающих примесей [90]. Установлена [93, 94] перспективность дезактивации радиоактивных вод, содержащих 8г , У , НЬ и Сз введением в них твердых носителей (гидроокиси железа и алюминия, ферроцианида меди) с последующей флотацией при добавлении соответствующих флотореагентов. [c.167]

    Стоки цеха концентрирования дивинила, содержащие большое количество меди, образуются при промывке оборудования перед ремонтом, а также при аварийных разливах поглотительного раствора внутри помещений. Высокая токсичность ионов меди для активного ила сооружений биохимической очистки вызывает необходимость практически полного извлечения ее из стоков. [c.18]

    По данным [0-65], рекомендуется удалять медь из сточных вод активным илом и аэрацией в течение 30 мин, но при этом методе эффект очистки колеблется в больших пределах от 31,2% до 92,0%. Но по данным [97], при извлечении меди активным илом в аэротенках содержание ее с 2,1—5,2 мг/л при pH 5,8 снижалось через 10 мин обработки до 81—84% и через 120 мин на 85—91%. По данным [21], на сооружениях биологической очистки из сточных вод извлекается 60% меди и остаточная концентрация составляет 1,2 мг/л. По другим данным [98], биологической очисткой извлекается из сточных вод 75% меди при pH 3 и 85% —при pH 7—8 рекомендуется доочистка стоков химическими и физико-химическими методами. [c.80]

    Химическая очистка сточных вод от меди применяется довольно широко, главным образом осаждением известью или едким натром. Описан метод извлечения меди из сточных вод осаждением ферроцианидом калия. Этот реагент — групповой осадитель из сточных вод ионов тяжелых металлов, концентрация меди в стоках снижается с 40,0 до 0,1 мг/л. Осадок отстаивается или отфильтровывается [101]. [c.80]

    Изучены основные закономерности электрофлотационного извлечения меди и цинка в присутствии пирофосфатов, тартратов, трилонатов и аммиака из промывных вод гальванических производств и производства печатных плат. Выявлено, что для извлечения дисперсной фазы необходимо создать избыток катионов по отношению к лиганду. Наибольший избыток необходим для сильных комплексообразователей, таких как тартрат и пирофосфат, образующих устойчивые комплексы. Определены флокулян-ты, интенсифицирующие процесс очистки сточных вод. Исследован процесс электрофлотационного извлечения ионов меди и цинка из цианидсодержащих сточных вод. Показано, что эффективность процесса зависит от соотношения металл лиганд, объемной плотности тока, концентрации хлорид-ионов. [c.54]

    Нитраты золота и ртути можно экстрагировать этилацетатом из азотнокислого раствора. Извлечение значительных количеств уранил-нитрата из азотнокислого раствора этиловым эфиром позволяет с очень большой эффективностью отделять осколки деления без носителей от массы облученного урана. Извлечение этиловым эфиром синей надхромовой кислоты, образующейся нри добавлении Н Ог к раствору бихромата, является превосходным методом очистки хрома от радиоактивных примесей, хотя и дает низкие выходы. В качестве примера можно упомянуть еще о методах извлечения дитизоната меди четыреххлористым углеродом, тиоцианата кадмия хлороформом, ацетилацетоната бериллия бензолом и многих других. Продуманный выбор комплексообразователей, например этиленди-аминтетрауксусной кислоты (ЭДТУ), позволяет сделать извлечение данного элемента более специфичным. Например, при извлечении ацетилацетоната бериллия присутствие ЭДТУ препятствует соэкстракции каких-либо других ионов вместе с бериллием (вследствие образования комплексов). [c.404]

    В настоящее время повсеместное распространение для обработки цинкового кека нашел так называемый вельц-процесс (walzen — катать). Сущность вельц-процесса заключается в том, что кек вместе с высокосортным углем и при доступе воздуха обжигают во вращающихся печах. Углерод восстанавливает окислы и сульфаты цинка, кадмия и другие компоненты до металла, они испаряются, а затем пары их снова окисляются воздухом. Таким образом, вельц-процесс представляет собой восстановительно-окислительный обжиг, в результате которого образуются так называемые вельц-окислы, содержащие ZnO, РЬО, dO, АЬОзу ЗЬгОз, ТпгОз, СагОз, СегОз и хлориды натрия, и клинкер, содержащий соединения меди, железа, золота, серебра, а также кремнезем. Вельц-окислы вместе с газами улавливают в фильтрах и направляют на выщелачивание и очистку. Продукты выщелачивания — кек и раствор — используются следующим образом кек поступает на извлечение свинца и других компонентов, а раствор возвращается в производство цинка после предварительной очистки от меди, которая используется вместе с другими медьсодержащими продуктами. Клинкер направляют на переработку на медеплавильные заводы. [c.272]

    Принципиальная технология извлечения меди из руды выщелачиванием с последующим электролизом показана на рис. 111. Схема практически универсальна. Отличие заключается в методе выщелачивания и способе предварительной очистки, а также в конструкции электролизера. Насколько необходимо б1 1вает предварительное исследование выщелачивания руды с целью получения хороших показателей, видно из следующих примеров. [c.221]

    Отфильтрованный раствор поступает на очистку от меди, а железный кек, в котором концентрации никеля и железа примерно равны, направляют на репульпацию. В кеке имеется не прореагировавший карбонат никеля и отчасти Ni(0H)2. Для извлечения этих соединений никеля кек разбавляют водой и закачивают в специальный бак, а затем туда же заливают крепкую серную кислоту из расчета 0,8—1 т Н2504 на 5—6 г кека. Массу подвергают перемешиванию. Соединения никеля растворяются, частично растворяется и железо. Затем избытком добавляемого кека доводят pH раствора до 3,3—3,6 и, наконец, для повышеН Ия pH раствор.а до 3,9—4,2 добавляют немного соды, после чего пульпу фильтруют. В кеке после репульпации отношение N1 Ре снижается до 1 4, 1 8. Фильтрат, содержащий N1804, поступает в оборин,ки грязного раствора. [c.374]

    Скорость циркуляции электролита поддерживают всегда, как указывалось, очень высокой. Это приводит к тому, что в обычного размера ваннах при однокаскадной системе электролит не успевает обезмеживаться. Чтобы довести извлечение меди до нужной величины, применяют многокаскадную систему циркуляции и вытянутые по длине ванны. При этом состав электролита в разных ваннах каскада оказывается неодинаков. В наиболее тяжелых условиях работы находятся последние ванны в каскаде. В последней ванне концентрация меди обычно 12—15 г/л. Пройдя через каскад ванн, отработанный электролит, обогащенный серной кислотой, поступает на выщелачивание руды и вновь возвращается на электролиз. В процессе многократного оборачивания электролит постепенно обогащается растворенными при выщелачивании примесями, не удаляющимися в ходе обычной очистки. Поэтому часть [c.36]

    Цементная медь, получаемая при очистке электролита, направляется на переработку на медеплавильный передел. Гидроокись кобальта (кобальтовый кек) является одним из главных исходных материалов для получения кобальта. Чтобы не направлять в кобальтовый передел больших количеств никеля, кек после осаждения и фильтрации вновь растворяют (репульпируют) и переоса-ждают. При этом значительная часть гидратного никеля, осадив-шаяся вместе с кеком, переходит в раствор и заворачивается в голову очистки. Переосажденный кек (кобальтовый концентрат) поступает в кобальтовый цех на производство кобальта. Железный кек, получаемый при очистке от железа, также подвергают репульпации и переосаждению для извлечения никеля. Переосажденный кек ЯВЛЯЕТСЯ отвальным продуктом. [c.83]

    Применение растворителя способствует лучшему осуществлению теплосъема, более равномерному распределению катализатора в реакционном объеме и защищает катализатор от ядов полимеризации. Ядами полимеризации являются ацетилен, кислород, вода, окись и двуокись углерода, сернистые соединения. Для удаления ацетилена из этилена применяют как метод селективного -гидрирования, так и извлечение органическими соединениями при низких температурах сернистые соединения и углекислый газ удаляют щелочной очисткой, метан, окись углерода — тонкой ректификацией, кислород— пропусканием этилена через слой горячей металлической меди, а воду — адсорбционными методами (осушкой на активированной окиси алюминия, силикагеле или цеолитах). [c.52]

    Применение. Процессы И. о. используют в аналит. химии и в пром-сти. С помощью И. о. концентрируют следовые кол-ва определяемых в-в, определяют суммарное солесодер-жание р-ров, удаляют мещающие анализу ионы, количественно разделяют компоненты сложных смесей (см. Ионообменная хроматография). И.о. применяют для получения умягченной и обессоленной воды (см. Водоподготовка) в тепловой и атомной энергетике, в электронной пром-сти в цветной металлургии-при комплексной гидрометаллургич. переработке бедных руд цветных, редких и благородных металлов в пищ. пром-сти - в произ-ве сахара, при переработке гидролизатов в мед. пром-сти-при получении антибиотиков и др. лек. ср-в, а также во мн. отраслях пром-сти-для очистки сточных вод в целях организации оборотного водоснабжения и извлечения ценных компонентов, очистки воздуха. Разрабатываются ионообменные методы комплексного извлечения из океанской воды ценных микрокомпонентов. [c.262]

    Для очистки аммиачно-молибденовых растворов от тяжелых металлов в полупромышленном масштабе использовали амфолит. АНКБ-1 в форме блоков или гранул с анионитом АН-31 в динамическом режиме. Состав раствора от аммиачного выщелачивания огарка печи КС был следующий (г/л) Мо 70—110 Си 1,08—2 10—15 SOf 12—18. Плотность раствора 1,09—1,14 г/см . Загрузка ионита в колонку 0,4 кг. Сорбция производилась в три цикла. Извлечение меди достигало 97—99%. Увлечение молибдена в амфолит — следы. Медь элюировалась 2 н. соляной кислотой и из элюата осаждалась цементацией. Содержание меди в элюате 12,5—17 г/л. Раствор молибдена в процессе ионообмена практически не загрязнялся. Техноэкономиче-ское сравнение ионитного метода очистки с сульфидным показало снижение эксплуатационных расходов на 20% и повышение извлечения молибдена—на 0,45%. Обменная емкость амфолита и полная динамическая обменная емкость от первого цикла сорбции к последнему возрастали (% по меди) соответственно от 2,73 до 5,05 и от 6,83 до 9,19. [c.216]

    Для извлечения из сточньгх вод металлов (цинка, меди, хрома, никеля, свинца, ртути, кадмия, ванадия, марганца), а также соединений мышьяка, фосфора, цианидов используется ионообменная очистка, позволяющая не только освобождать воду от загрязнения токсичными элементами, но и улавливать для повторного использования ряд ценных химических соединений. [c.258]

    Модификации атого катионита могут применяться в гидролизной промышленности ДЛЯ выделения и очистки лизина, в Гид-,рометаллургии — для извлечения цветных металлов (например, меди) из пульповых систем, теплоэнергетике — для обессолива-ния воды. Обменная емкость по меди одной из модификаций катионита в 2 раза выше, чем у Вофатита К8-10 (ГДР), заметно лучше и механическая прочность (98% против 85% для Вофатита К8-10). [c.161]

    Гидрометаллургия висмута нашла широкое применение в настоящее время лишь в процессах получения соединений, и она основана на использовании в качестве исходного сырья металла. Получают соединения из металла марки Ви1 путем его растворения в азотной кислоте с последующей гидролитической очисткой [1]. При этом стадия приготовления растворов связана с выделением в газовую фазу токсичных оксидов азота. К 2000 г. мировое потребление висмута и его соединений составляет 5—6 тыс. т в год. В связи с этим производство соединений висмута становится серьезным фактором загрязнения окружающей среды. В то же время предложено большое число гидрометаллургических схем извлечения висмута из концентратов от переработки свинцовых, медных, оловянных, вольфраммолибденовых руд, содержащих обычно 0,1—2 % В1 [2—5], но пока они практически не используются в промышленности. В процессе выщелачивания таких концентратов получают хлоридсодержащие растворы, концентрация висмута в которых составляет всего 1—10 г/л, а концентрация примесных металлов (железа, меди, свинца) существенно выше. Переработка этих растворов гидролизом с получением соединений висмута реактивной чистоты — трудно выполнимая задача, так как наряду с концентрированием висмута и эффективной его очисткой от примесных металлов, требуется очистка конечного продукта от хлорид-ионов до концентрации <0,001 %. В последнее время для извлечения, концентрирования и очистки редких, радиоактивных и цветньсх металлов широко используются процессы экстракции и сорбции. [c.41]

    Из приведенного ряда следует, что В1 относится к металлам, наиболее эффективно экстрагируемым алифатическими монокарбоновыми кислотами, и при его извлечении из технологических растворов возможна очистка от таких основных примесей, как железо, свинец, медь, серебро, кадмий, цинк, никель (рис. 3.13). В [85] показано, что алифатическими монокарбоновыми кислотами В] экстрагируется в виде мыла В1Кз, и при этом возможно его отделение от кобальта и никеля. Показано [100], что висмут экстрагируется расплавом стеариновой кислоты из перхлоратных, сульфатных и хлоридных растворов в виде В1Кз, где Я — анион монокарбоновой кислоты. Холь-киным с соавторами [101] показана перспективность использования процесса экстракции металлов монокарбоновыми кислотами для синтеза висмутсодержащих сверхпроводящих материалов состава В12Са8г2СиО с. [c.69]

    Физическая адсорбция. В последние годы для очистки природного газа от сероводорода широко применяют адсорбционные методы на цеолитах, наиболее эффективные из них СаА. Адсорбция протекает под давлением 1,7—5 МПа и обеспечивает остаточное содержание сероводорода около 2 мг/м . Наряду с тонкой очисткой газа от сероводорода и других сернистых соединений на цеолитах происходит также его глубокая осушка. Цеолиты обладают высокой адсорбционной емкостью и селективностью по отношению к сероводороду. Для очистки больших количеств газа (до 200000 мУч) с низким содержанием сероводорода в качестве адсорбентов используют также активные угли. При этом степень извлечения сероводорода может достигать 99,5%. Сорбционные свойства углей могут бьггь повышены введением в их состав оксидов некоторых металлов меди, железа, никеля, марганца, кобальта. [c.153]

    Перед выбросом в атмосферу аспирируемый из агрегатов воздух должен подвергаться очистке на установках пылеулавливания и химической очистки газов. Снижению поступления меди в атмосферу в значительной мере способствует технология, обеспечивающая наиболее полное извлечение ценных компонентов из уловленной пьиш. Необходим учет всех источников загрязнения атмосферного воздуха, контроль за соблюдением гигиенических нормативов, эффективностью работы газопьшеочистных установок, степенью загрязнения атмосферного воздуха, а также соблюдением технологического регламента на всех этапах переработки сырья. [c.468]

    Электрохимический метод очистки заключается в разрушении органических веществ сточных вод путем электрохимического окисления их на аноде и в извлечении из сточных вод металлов, кислот и других веществ. Электрохимический метод применим, например, при очистке сточных вод от медно-свинцово-цинковых рудообогатительных и золото-извлекательных фабрик, производства некоторых видов пластических масс, цехов гальванических покрытий и т. п. Содержащиеся в некоторых стоках цианиды окисляются при этом до углекислоты и азота. Наряду с анодным окислением цианидов и роданидов при электролизе сточных вод медно-свинцово-цинковых рудообогатительных фабрик и цехов гальванических покрытий на катоде регенерируются медь и некоторые другие металлы. [c.52]

    Достаточно полная очистка сточных вод производства хлоропренового каучука может быть достигнута на основе сочетания первичной обработки отдельных потоков сточных вод с целью извлечения биохи-матическн устойчивых органических веществ (сульфонафтеновых кислот.—СТЭКа), ионов меди, полимеров, а также нейтрализации кислот с дополнительной очисткой на общезаводских биологических станциях.При определении необходимой степени очистки сточных вод от СТЭКа необходимо исходить из того, что предельно допустимые концентрации этого ингредиента в сточных водах, направляемых на биологическую очистку,—70 мг/л, а в воде водоемов — 1 мг/л. Частичная очистка сточных вод от СТЭКа может быть осуществлена осаждением его в виде плохо растворимых кальциевых солей. При дозе 2,5 мг СаО и 1 мг Al2(S04) j на 1 мг СТЭКа степень очистки составляет 85—90%. Реакция протекает практически мгновенно. [c.206]

    Нефтегазохимическая схема на практике не проверялась, но по отдельным ее элементам были проведены испытания во ВНИИНП и НИИ-100 на искусственных смесях, состоящих из бензина, ароматических углеводородов, спиртов и т. п. в соотношениях, получающихся при использовании РКГ. В лабораторных условиях проверено использование для извлечения меди слабой На304, полученной при отмывке водой кислого гудрона, что может сделать рациональным очистку нефтяных дистиллатов серной кислотой. [c.20]


Смотреть страницы где упоминается термин Извлечение и очистка меди: [c.380]    [c.190]    [c.237]    [c.530]    [c.788]    [c.257]    [c.321]   
Смотреть главы в:

Основы жидкостной экстракции -> Извлечение и очистка меди




ПОИСК





Смотрите так же термины и статьи:

Медь извлечение

Очистка извлечение



© 2025 chem21.info Реклама на сайте