Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафиновые производные

    Промежуточное положение между процессами хемосорбции и разделением с помощью чисто адсорбционных сил занимают методы, основанные на образовании некоторыми веществами непрочных соединений (комплексов, аддуктов), которые характеризуются строго определенной кристаллической структурой. Наиболее характерный пример таких методов — выделение парафиновых углеводородов нормального строения с числом атомов углерода выше 6—7, а также их некоторых производных путем образования аддуктов с карбамидом (мочевиной) O(NH2)2. [c.314]


    При замещении хлора в молекуле метана фтором температура кипения углеводорода снижается приблизительно на 52°. Температура кипения производных этана изменяется значительно меньше. Ниже пр.и-ведена температура кипения (°С при 760 мм рт. ст.) некоторых хлорированных и фторированных парафиновых углеводородов  [c.204]

    Подобные смеси по-разному ведут себя при реакциях замещения и при дальнейшей переработке замещенных производных, что практически доказано многочисленными исследованиями, проводившимися в промышленных лабораториях. Даже одно и то же исходное сырье часто значительно различается по качеству. Как правило, наиболее пригодны для химической переработки нефти с преобладающим содержанием парафиновых углеводородов. Представителем нефтей этого типа является, например, пенсильванская нефть. [c.13]

    Содержание ароматических соединений в бензине каталитического крекинга можно объяснить либо дегидрированием производных циклогексана, либо более просто отщеплением алкильных групп от молекул замещенных ароматических углеводородов, содержащихся в сырье. Малая дегидрирующая активность алюмо силикатов и тот факт, что толуол не обнаруживается в продуктах каталитического крекинга гептана при весьма жестких условиях, заставляют еще более сомневаться в возможности образования ароматических соединений при каталитическом крекинге в больших количествах благодаря дегидроциклизации. Представляется вполне вероятным, что ароматические соединения образуются из низших олефинов, которые всегда содержатся в реакционной массе при расщеплении цепей парафиновых углеводородов. Это подтверждается, например, идентификацией простых одноядерных ароматических углеводородов в продуктах, полученных из пропилена, и-бутенов, пентенов и гексенов. [c.333]

    Сравнение с данными табл. 44 показывает, что длины связей М—Ср в среднем на 0,3 А больше, чем связи тех же металлов в парафиновых производных. Это вызвано тем, что на атомах С в Ср имеется гораздо больший отрицательный заряд, чем в алкиле (см. с. 199). [c.104]

    С химической точки зрения продукты хлорирования парафиновых углеводородов могут играть очень большую роль. Представляет интерес замена хлора в хлорированных углеводородах другими функциональными группами (МНа, ОН, ЗН, СН, ЗОзКа), так как, используя реакцию двойного обмена, этим путем можно прийти к новым производным парафинов. Последние либо сами по себе могли бы найти техническое применение, либо могли бы служить источником получения других продуктов. Весьма легко протекающий процесс хлорирования служит как бы средством создания в молекуле парафина, который ранее рассматривался по меньшей мере как малоактивный уязвимого для дальнейших превращений места, где могли бы затем проходить новы< реакции. [c.531]


    Получение функциональных производных парафиновых углеводородов описанным выше методом (через хлорирование) благодаря новейшим достижениям в осуществлении реакций замещения парафинов в настояшее время уже больше не является особо привлекательным. Возможность гладко протекающего нитрования и сульфохлорирования низших и высших парафиновых углеводородов позволяет получить многие продукты, имеющие промышленный интерес, совершенно другим путем. [c.532]

    Исследователи отмечают [4, с. 23—32], что, начиная с нонана и выше, в равновесных смесях устанавливается очень близкое соотношение моно-и диметилзамещенных производных. В смысле термодинамической устойчивости существует оптимальное соотношение отдельных групп изомеров. Термодинамическое равновесие для высших парафиновых углеводородов в меньшей степени зависит от молекулярной массы. От- [c.111]

    При записи уравнений балансов процессов переработки нефтяных фракций реагирующие вещества объединяют или по технологическим признакам (газ, бензин, дизельное топливо и т. п.), или по химическим признакам (парафиновые углеводороды, нафтеновые углеводороды и т. п.). Соответственно говорят о технологической или химической группировке. Для тепловых расчетов удобнее химическая группировка, так как она позволяет использовать точные данные о теплотах реакций индивидуальных углеводородов и их производных. [c.134]

    Минеральные масла представляют собой сложную смесь парафиновых, нафтеновых, ароматических и нафтено-ароматических углеводородов, а также кислородных, сернистых и азотистых производных этих углеводородов. При работе двигателя масла подвергаются глубоким химическим превращениям окислению, полимеризации, алкилированию, разложению и т. д. при этом образуются кокс, смолистые, асфальтовые и другие вещества. Образо- [c.13]

    Содержатся в нефтях главным образом производные цикло-пентана С Ню и циклогексана С Шг. По химическим свойствам нафтены близки к парафиновым углеводородам они не присоединяют атомов других веш еств, а лишь вступают в реакции заме-ш епия. Такая устойчивость молекулы нафтенов объясняется у замкнутостью ее кольца и отсутствием двойных связей. у-  [c.13]

    За последние годы требования, предъявляемые к нефтепродуктам, в частности к моторному топливу, настолько повысились, что в некоторых случаях бывает недостаточно знать групповой углеводородный состав легких моторных топлив, так как знание его иногда недостаточно для определения поведения топлива в моторе. Необходимо знать число двойных связей в молекуле ненасыщенных углеводородов, вид содержащихся в топливе ароматических углеводородов (производные бензола, нафталина, антрацена, полугидрированных ароматических углеводородов), число углеродных атомов в кольце нафтеновых и число боковых цепей парафиновых углеводородов и многое другое. [c.520]

    Кроме ароматических углеводородов ряда бензола в нефтях содержатся производные полициклических ароматических углеводородов. Отдельную группу составляют смешанные углеводороды. Молекулы таких углеводородов содержат ароматические и нафтеновые кольца и парафиновые цели. [c.7]

    В ближайшие годы можно ожидать значительного роста производственных мо щностей промышленности органического синтеза на основе переработки парафиновых углеводородов. Важными предпосылками для этого являются, с одной стороны, синтетическое получение парафиновых углеводородов из угля, природного газа и нефти и, с другой — разработка промышленных процессов реакций замещения парафиновых углеводородов и дальнейших превращений полученных производных. Таким путем будут создаваться все новые ценные полупродукты и товарные продукты на основе парафиновых углеводородов как исходного сырья. [c.11]

    Следов ательно, из парафиновых углеводородов с 12—18 углеродными атомами, важных с точки зрения пронзводства поверхностно-активных веществ, в среднем образуется не более — 20% первичного, т. е. замещенного при концевом атоме хлорида. Таким образом, обнаруживается- весьма важное для последующего рассмотрения вопроса обстоятельство, что при хлорировании высокомолекулярных парафиновых углеводородов образуются в преобладающей степени вторичные хлориды. В то время как- при газофазном хлорировании пропана при 300° еще образуется около 50% хлорида, содержащего хлор при концевом атоме углерода, для триаконтана (СзоНб2) при хлорировании в жидкой фазе, и отношении скоростей замещения первичного и вторичного водородов, равном 1 3,25, образование хлорированного при концевом атоме производного составляет лишь 3% (см. главу Закономерности реакций замещения парафиновых углеводородов , табл. 143, стр. 555). [c.200]

    В состав нефтей входят ароматические углеводороды с числом циклов от одного до четырех. Распределение их по фракциям различно. Как правило, в тяжелых нефтях содержание их резко возрастает с повышением температуры кипения фракций. В нефтях средней плотности и богатых нафтеновыми углеводородами ароматические углеводороды распределяются по всем фракциям почти равномерно. В легких нефтях, богатых бензиновыми фракциями, содержание ароматических углеводородов резко снижается с повышением температуры кипения фракций. Ароматические углеводороды бензиновых фракций (выкипающих от 30 до 200° С) состоят из гомологов бензола. Керосиновые фракции (200—300° С) наряду с гомологами бензола содержат производные нафталина, но в меньших количествах. Ароматические углеводороды тяжелых газойда-вых фракций (400 —500° С) состоят преимущественно из гомологов нафталина и антрацена. В деасфальтированном остатке от перегон1(4 и ромашкинской нефти Н. И. Черножуков и Л. П. Казакова наряду с твердыми парафиновыми и нафтеновыми углеводородами обнаружили твердые ароматические углеводороды с температурой плавления 32° С. [c.26]


    В дальнейшем необходимо установить, почему из парафиновых углеводородов, особенно из высших, нельзя получить спирты и другие функциональные производные при помощи промежуточного хлорирования— метода весьма привлекательного. Объяснение этого факта, предполагающее исчерпывающее зиание закономерностей процессов замещения парафиновых углеводородов, связано с тем общим выводом, что не только хлорирование, но и все другие реакции замещения парафинов протекают по определенным одинаковым закономерностям. [c.532]

    Теоретически низшие газообразные парафиновые углеводороды могут образовать относительно немного монозамешенных производных, даже с учетом возможности изомеризации исходных углеводородов. Однако с увеличением молекулярного веса последних число изомерных лродуктов замещения резко растет. [c.541]

    Число монозамещенных производных, которое можно получить у парафиновых углеводородов, учитывая разветвление их цепей [c.541]

    Табл. 139 дает представление об увеличении числа монозамещенных производных парафиновых углеводородов с учетом возможного разветвления их цепей [31]. Из табл. 139 видно, что могут получаться смеси продуктов монозамешения, разобраться в которых будет невозможно, особенно если длина цепи велика. Поэтому в случае высших углеводородов перспективы на успех имеют лишь те исследования, которые занимаются углеводородами с прямой неразветвленной цепью. В этом случае число продуктов монозамещения гораздо меньше. Пытаться же выяснить процентный состав продуктов ди- и тризамещения уже не имеет смысла. [c.541]

    Нафтены с длинными алкильными цепями при гидрокрекинге на катализаторах с высокой кислотной активностью подвергаются изомеризации и распаду цепей как парафиновые углеводороды. Расщепление кольца происходит в небольшой степени. Интенсивно П)ютекают реакции изомеризации шестичленных в пятичленные нафтены. Бициклические нафтены превращаются преимущественно в моноциклические с высоким выходом производных циклопен — тана. На катализаторах с низкой кислотной активностью протекает в основном гидрогенолиз — расщепление кольца с последующим насыщением образовавшегося углеводорода. [c.226]

    К активным ингибиторам окисления относятся некоторые производные тиофана нафтилтиофан и в меньшей степени ди-фенилтиофан, а также дибензилдисульфид и додецилмеркаптан., Обращает на себя внимание, что, во-первых, все эти соединения (за исключением нафтилтиофана) более эффективны при добавлении к нафтено-парафиновым фракциям, чем к (Маслам, и, во-вторых, в подавляющем большинстве случаев заметно умень--шая образование свободных и связанных кислот, они способствуют образованию осадков. [c.89]

    Эванс, Хиббард и Поуэл [7] изучали спектры поглощения в ближней инфракрасной области (1,10—1,23 и) различных парафиновых и циклопарафиновых углеводородов, содержащих от 13 до 34 углеродных атомов, а также некоторых смазочных масел, освобожденных от ароматических углеводородов адсорбцией. При этом было обнаружено замечательное сходство между спектрами насыщенных (свободных от ароматики) смазочных масел и некоторыми производными циклопентана такого же молекулярного веса. В итоге авторы пришли к выводу о том, что имеется убедительное доказательство того, что насыщенные фракции смазочных масел содержат большое количество циклсшентановых колец . [c.33]

    Бензольные кольца сами по себе не подвержены низкотемпературному окислению, но их производные с парафиновыми цепочками увеличивают способность к этому. При окислении этил-и м-нронилбепзолов получаются соответственно ацетофенон и пропиофенон, причем реагирует а-углеродпый атом кольца [27, 41]. Цимол и кумол, содержащие алифатический третичный атом углерода, окисляются подобным же образом с образованием ацетофенона и тгара-толил метилкетопа соответственно. Третичный бутилбензол при низких температурах не окисляется. [c.73]

    Включенные соединения можно классифицировать по форме их молекул па компоненты с молекулами сферической (Нд, N3, С1з, СН4, СС14), продолговатой (линейные парафиновые углеводороды, целлюлоза, белки, каучук) и плоской формами (ароматические углеводороды и их производные, орторомбическая сера). Особую группу составляют трехмерные макромолекулы. [c.76]

    Исследование ароматических углеводородов масляных фракций усложняется тем, что им всегда сопутствует большее или меньшее количество сероорганических соединений. Во фракциях ароматических углеводородов, выделенных из масляных дистиллятов или остатков даже так называемых бесоернистых нефтей, всегда содержатся эти соединения их тем больше, чем выше среднее число ароматических циклов в углеводородах, составляющих ароматическую фракцию. Обычный путь разделения нефтяных фракций на силикагеле или активной окиси алк>миния, позволяющий достаточно полно отделить нафтено-парафиновую часть нефтяной фракции от ароматической или с известным приближением разделить ароматические углеводороды друг от друга по числу колец в молекуле, большей частью неприменим для отделения ароматических углеводородов от сопутствующих им серосодержащих соединений. При разделении по этому методу сернистые производные даже неароматических углеводородов, т. е. содержащие алкильные или ацильные радикалы, попадают в аро- [c.17]

    Исследование тех же франций при помощи масс-спектромет-рии показало, что ароматические углеводороды с высоким ИВ (фракция 1) содержат свыше 40% алкилбензолов. Остальные углеводороды (более 50%) являются нафтено-ароматическими, в которых бензольное кольцо сконденсировано с одним или двумя нафтеновыми. С понижением ИВ содержание алкилбензолов уменьшается до 27,9% и возрастает содержание производных бензола с 1—4 нафтеновыми кольцами. Строение парафиновых цепей ароматических углеводородов определяли после гидрирования исследуемых франций определялись ИК-опектры поглощения в области 700—900 см . Результаты исследования П01казали, что высокоиндексные ароматические углеводороды можно отнести к по-лизамещенным производным бензола, содержащим 1—2 длинные и несколько коротких цепей. У углеводородов с низким индексом вязкости (особенно с отрицательным) больше коротких цепей и значительно больше нафтеновых колец. Таким образом, сочетая современные методы разделения и анализа, можно составить достаточно полное представление о химическом составе ароматических углеводородов, входящих в масляные фракции. [c.20]

    Таким образом, в маслах, получаемых из сернистых нефтей, производные серы наряду с нафтено-парафиновыми и нафтено-ароматическими углеводородами я1вляются одними из основных компонентов. [c.26]

    Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]

    Соединения, содержащие серу, явно участвуют в коксообразо-, ванип. При спектральном изучении состава коксовых отложений, экстрагированных растворителями после гидрокрекинга (давление 30 кгс/см ) нефтей и тяжелых фракций, установлено, что в них содержатся парафиновые и циклопарафиновые углеводороды, производные бензола, гомологи дифенила, би- и трициклические ароматические углеводороды и ароматические соединения, содержащие серу В экстрактах обнаружены также соединения молибдена и кобальта, образовавшиеся, очевидно, из активных компонентов катализатора, но не найдены продукты уплотнения. Они, вероятно, образуются на последних стадиях процесса, так как с переходом к сухому коксу увеличивается число ароматических колец, резко возрастает отношение С Н. [c.318]

    Сырьем для получения нафталина служат высоко-ароматизированные фракции, выделенные из дистиллятов каталитического риформинга, крекинга, пиролиза и других продуктов и содержащие в основном бицикли-ческие ароматические углеводороды. В связи с тем что нафталин с парафиновыми и нафтеновыми углеводородами образует азеотропные смеси [12], температуру начала кипения исходного сырья обычно выбирают около 200° С. В сырье не должно содержаться трициклических ароматических углеводородов, в противном случае в продуктах реакции будет накапливаться высококипя-щий остаток. Поэтому конец кипения сырья для производства нафталина не должен быть выше 300° С. Другое требование, предъявляемое к сырью, — максимальное содержание производных нафталина при минимальном среднем молекулярном весе углеводородов во фракции. Однако получение высокоароматизированных фракций из нефтяных продуктов с малым содержанием парафиновых углеводородов не всегда возможно поэтому при проведении процесса гидродеалкилирования применяют специальные методы, позволяющие уменьшить деструкцию парафиновых углеводородов в газообразные продукты. Содержание сернистых соединений в исходном сырье также оказывает влияние на схему производства нафталина и на выбор метода гидродеалкилирования. [c.295]

    Ун е из вышесказанных беглых замечаний очевидно, что ни -сронарафипы и пх производные (так же как и многие другие полупродукты производства взрывчатых веществ) при реконверсии военной промышленности с успехом могли бы быть 1гс-ио. [ьзованы в промышленности искусственного волокна, пластмасс, лакокрасочной и т. д. Промышленные возможности д.ля ( интеза нитропарафинов и их разнообразных производных [1. )] были созданы проведенными в различных странах в течение последнего десятилетия обширными исследованиями нитрации парафиновых углеводородов. Заводское производство нитро-парафннов было в США впервые осуществлено летом 1940 г. [16], а краткое описание иромышленного метода их нроизводства опубликовано в 1942 г. [17]. [c.464]


Смотреть страницы где упоминается термин Парафиновые производные: [c.130]    [c.199]    [c.201]    [c.299]    [c.314]    [c.9]    [c.66]    [c.174]    [c.113]    [c.47]    [c.444]    [c.314]    [c.314]    [c.358]    [c.20]    [c.357]    [c.297]    [c.31]   
Смотреть главы в:

Промышленное применение металлоорганических соединений -> Парафиновые производные




ПОИСК





Смотрите так же термины и статьи:

Аммиак получение азотсодержащих производных парафинов посредством его

Вазелиновое масло парафиновое масло галоидные производные метана

Галоидирование парафиновых углеводородов и их производных (реакция металепсии)

Дегидрирование парафинов и их производных

Дегидроциклизация парафинов и их производных

Каталитическая конденсация в органической химии Каталитическая конденсация насыщенных (парафиновых) углеводородов и их галоидных производных (таблица

Парафин твердый парафиновый воск галоидные производные углеводородо

Реакции парафинов, олефинов, диолефинов, ацетиленовых соединений, цикланов, цикленов и их производных

Фракционирование парафинов и их производных при помощи образования и разрушения карбамидного комплекса



© 2025 chem21.info Реклама на сайте