Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные характеристики чувствительности и точности

    Основной особенностью анализа группового состава, отличающей его от анализа индивидуального состава, является его статистический характер. Это обусловлено тем, что все измеряемые или рассчитываемые величины представляют собой не характеристики какого-то определенного соединения, которые можно измерить с той или иной степенью точности, определяемой приборными факторами и условиями опыта, а являются результатом усреднения таких характеристик для многих индивидуальных соединений, присутствующих в смеси, т. е. все калибровочные коэффициенты, коэффициенты чувствительности и другие параметры являются функциями состава смеси. Поэтому в молекулярной масс-спектрометрии особенно большую роль играет построение спектральных моделей анализируемых групп соединений (которые далее мы будем называть групповыми масс-спектрами), уменьшающих большой разброс спектральных признаков индивидуальных соединений, сильную зависимость этих признаков от структуры, которые могли бы определяться даже при отсутствии в ряде случаев достаточного количества экспериментального материала. [c.58]


    При математическом моделировании процессов химической технологии возникает задача оценки параметрической чувствительности модели. Эта задача решается как при проверке адекватности модели и объекта, так и при определении параметров модели по экспериментальному профилю концентрации. При этом точность определения констант модели зависит от чувствительности характеристик процесса к изменению искомого параметра. Эффективность процесса экстракции определяется как функция следующих факторов интенсивности массопередачи, степени продольного перемешивания и вида равновесной зависимости. Весовой вклад каждого из этих факторов зависит от режимов работы и геометрических характеристик экстрактора. Выявление степени влияния каждого из указанных факторов на профиль концентрации, с помощью которого осуществляется идентификация математической модели и объекта, составляет основную задачу анализа параметрической чувствительности экстрактора. Анализ показывает следующее  [c.390]

    При исследовании кинетики реакций разложения широко используется термогравиметрический метод анализа (ТГА) как в изотермическом, так и в динамическом режимах [164-168]. Безусловно, что определение кинетических параметров реакций разложения полимеров в изотермических условиях дает более точные и корректные результаты, однако этот метод является трудоемким, требует значительного времени и большого числа образцов. В связи с этим в последние 15-20 лет для исследований полимеров, а также композиционных полимерных материалов [169, 170] начали широко применять динамическую термогравиметрию. Этот метод, несмотря на ряд его существенных недостатков (неравновесность условий, трудность контроля температуры, скорости нагрева, чувствительность к наличию низкомолекулярных примесей и к термической предыстории образца, перекрывание отдельных стадий процесса [164] и т. п.), позволяет не только получить количественные характеристики процесса разложения (температура начала и окончания процесса, степень разложения как функция температуры и др.), но и описать этот процес с достаточной точностью в виде кинетических уравнений, параметры которых находят на основании экспериментальных данных. [c.120]

    При неизменных свойствах измерительного прибора величины Dg Т1 Оф (или /g и /ф) определяются значениями некоторых параметров аналитического процесса П2, /7 - Основой для выбора условий аналитического процесса служат экспериментальные кривые, показывающие зависимость показаний прибора от значений каждого из параметров при фиксированных значениях остальных получение таких характеристик составляет обязательную часть работы, предшествующей применению и публикации метода определения оно долй<но охватить все параметры, существенно влияющие на чувствительность и точность определения [c.80]


    По мере увеличения точности измерений оптического вращения в результате повышения чувствительности приборов становится проблемой воспроизводимость экспериментальных результатов. Величины вращения, приведенные в литературе, должны быть тщательно оценены, прежде чем рассчитывать оптическую чистоту какого-то соединения, поскольку возможность потенциальной ошибки при измерении оптического вращения довольно значительна, особенно когда выбор условий может вызвать изменения, обсужденные выше. Поскольку существует несколько различных методов для определения энантиомерного состава, нет необходимости измерять оптическое вращение для соединений с низкой вращательной способностью или минимальной энантиомерной чистотой. Однако в подавляющем большинстве случаев наиболее полезной характеристикой оптически активного соединения является оптическое вращение, желательно измеренное при нескольких длинах волн и по крайней мере в двух растворителях. Для расчета абсолютного вращения энантиомера необходимо подтвердить энантиомерный состав соединения, определенный на основании его оптического вращения, с помощью другого метода. Поскольку в большинстве случаев оптическая чистота, рассчитанная по данным оптического вращения, и энантиомерная чистота, полученная с помощью других физических методов, совпадают, при изучении асимметрического синтеза удобнее использовать определение оптического вращения. Если [c.41]

    Сегодня квантовая химия позволяет с высокой точностью вычислять равновесные межъядерные расстояния и валентные углы, барьеры внутреннего вращения, энергии образования и энергии диссоциации, частоты и вероятности переходов под влиянием электромагнитного излучения в весьма широком диапазоне длин волн (от рентгеноэлектронных спектров до спектров ЯМР), энергии активации, сечения и константы скорости простейших химических реакций. В ходе квантовохимических расчетов для многих молекул было обнаружено, с одной стороны, существование значительного числа минимумов на потенциальных поверхностях, разделенных часто невысокими барьерами (нежесткие молекулы), была установлена высокая чувствительность электронного распределения к изменениям ядерной конфигурации, а с другой стороны, были подтверждены и постулируемые классической теорией возможности переноса локальных характеристик отдельных фрагментов молекул в рядах родственных соединений и т.п. Квантовая химия значительно облегчает интерпретацию различных экспериментальных спектров. [c.5]

    При оценке значимости совпадения вычисленных и опытных значений двугранных углов нужно иметь в виду то обстоятельство, что по ряду причин они не являются удовлетворительными количественными характеристиками пространственного строения белка, найденного теоретическими экспериментальным путем. Их величины зависят от длин связей и валентных углов молекулы, которые в двух случаях не могли быть идентичны. Так, полученные Дж. Дайзенхофером и У. Стайгеманом [10] при уточнении кристаллической структуры БПТИ по методу Даймонда [13] величины валентных углов С(МС С ) обнаруживают существенный разброс (95-124°), который не может отвечать реальной ситуации. Приведение углов х(ЫС С ) к действительно наблюдаемым у пептидов значениям (интервал 106-114°) неминуемо повлечет изменение найденных в работе [Ю] двугранных углов ф, у. оо основной цепи и Х боковых цепей. В нашем расчете была выбрана иная валентная геометрия белковой цепи, основанная на параметрах Полинга для длин связей [14] и усредненных значениях валентных углов пептидной группы [15]. Другая причина неполной корректности сопоставления структур по двугранным углам связана с точностью их расчета. Небольшие ошибки в значениях отдельных двугранных углов, особенно основной цепи, могут привести к значительному изменению всей структуры. Поскольку в расчете они неизбежны, на первый взгляд представляется даже бесперспективным теоретический кон-формационньп анализ белков. На самом деле такое опасение оказалось сильно преувеличенным. Вследствие высокой конформационной чувствительности потенциальной энергии, уникальности трехмерной структуры белка и большой гибкости пептидной цепи на ряде участков аминокислотной последовательности двугранные углы не являются независимыми друг от друга и отклонения расчетных значений одних углов от их истинных величин в той или иной степени компенсируются отклонениями других. Поэтому допускаемые в определении углов погрешности радикальным образом не сказываются на окончательном результате. Однако при сопоставлении их опытных и теоретических значений трудно оценить, насколько серьезно наблюдаемое численное расхождение между ними. [c.464]


    Очевидно, одним из способов является изучение физико-химических характеристик отдельных связей и молекул алканов в целом. Одним из методов проверки указанного предположения является измерение межатомных расстояний в связях С — С и С — Н разных подтипов. Однако чувствительность этого метода пока настолько мала, что практически все межатомные расстояния С — С в алканах оказываются, по экспериментальным данным, одинаковыми в пределах точности современных электронографкческих измерений . Этот метод не дает возможности в настоящее время установить различия в свойствах связей С — С или С — Н, относящихся согласно данной выше классификации к разным подтипам. [c.76]

    Характеристики пика можно получить, измеряя их вручную или автоматически, с помощью лабораторных интеграторов, рассмотренных Эвингом [133]. Ручная обработка включает измерение высоты пика, площади пика по его высоте и ширине, или планиметрическое определение периметра, вырезание и взвешивание зоп в автоматических методах используют интегрирование. Для пиков, ширина которых (в пределах одного стандартного отклонения) не зависит от размера пробы, более точные результаты могут быть получены на основе измерения высоты, а не площади пика. Для достижения высокой точности необходимо обеспечить постоянство всех экспериментальных условий, влияющих на удерживаемый объем и форму пика, в том числе температуры колонки, количества жидкой фазы, объема детектора, длительности ввода и размера пробы. С другой стороны, при условии постоянной скорости потока площадь пика не чувствительна к некоторым переменным факторам эксперимента, влияющим на удерживаемый объем и высоту пика. Поэтому в большинстве случаев более приемлемо измерение не высоты, а площади пика, поскольку в этом случае изменение многих экспериментальных условий не влияет на градуировочный график. [c.561]

    Экстракционно-фотометрические методы анализа, разработанные автором, получили широкое применение при определении малых содержаний тантала, индия, таллия, бора и других элементов. Предложенная работа является первой попыткой обобщения экспериментального материала по этим методам. В ней дана характеристика различных форм красителей-реагентов, рассмотрены раг-иовесия в экстракционных системах, исследованы факторы, лимитирующие чувствительность и точность анализа. Даны критерии для выбора оптимальных условий применения реагентов и указаны пути повышения чувствительности и точности. В работе описаны реакции 23 элементов с основными красителями приведены прописи определения 10 элементов в рудах и горных пор(.-дах. [c.4]

    Технические ограничения в определении среднечислового и средневесового молекулярных весов исследуемого полимера делают невозможным применение отношения ,х/7( в качестве надежной характеристики полидисперсности. Среднечисловая степень полимеризации (ОР) полимеров высокого молекулярного веса определяется с точностью не больше 3%, точность определения средневесовой ОР не превышает 2%. Поэтому отношение /71 ненадежно в пределах 5%, и, следовательно, отношение ц/п, равное 1,05, экспериментально неразличимо с идеальным случаем ( ,./ = 1)- Для анализа гомогенности реального однородного полимера необходимо развитие новых методов. Чувствительной мерой однородности полимера может служить температурный интервал осаждения полимера при охлаждении раствора в плохом растворителе. Методом светорассеяния было показано, что высаживанию полимера предшествует повышение кажущегося Ми образца. Это явление известно как критическая опалесценция [137]. Пусть существенное возрастание кажущегося наблюдается при температуре Тр + АТ, в то время как осаждение полимера заканчивается при Тр. По мере увеличения однородности образца ДТ уменьшается и становится равной 2 — 3° для обычным образом фракционированного образца. При высокой степени однородности полимера АГ уменьшается до О,Г" Макинтайр и др. [138] попытались применить этот метод для характеристики монодисперсности полимера. Есть надежда, что в качестве метода исследования полидисперсности [c.38]


Смотреть страницы где упоминается термин Экспериментальные характеристики чувствительности и точности: [c.150]    [c.39]    [c.22]    [c.144]    [c.144]   
Смотреть главы в:

Экстракционно-фотометрические методы анализа с применением основных красителей -> Экспериментальные характеристики чувствительности и точности




ПОИСК





Смотрите так же термины и статьи:

Точность



© 2025 chem21.info Реклама на сайте