Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация с катализаторами на носителях

    Силикагели. Силикагель (ксерогель кремниевой кислоты с хорошо развитой пористой структурой) используется для осушки воздуха и промышленных газов, осушки различных жидкостей, рекуперации паров органических веществ, очистки масел, удаления из нефти смолистых веществ. Применяется в хроматографии, а также как носитель и катализатор для реакций полимеризации, конденсации, окисления и восстановления органических веществ, для разделения радиоактивных изотопов, очистки промышленных сточных вод от ионов различных металлов [29]. Производится промышленностью в виде зерен и шариков в зависимости от пористой структуры может быть двух сортов мелкопористый и крупнопористый. В свою очередь каждый сорт по размерам зерен имеет несколько марок  [c.387]


    Гидрирование ацетиленовых и диеновых углеводородов в пропан-пропиленовой и бутан-бутиленовой фракции пиролиза. Во избежание термической полимеризации гидрирование сжиженных газов пиролиза необходимо осуществлять при возможно более низкой температуре (не более 50 °С), причем повышение ее должно происходить только путем адиабатического разогрева (за счет теплового эффекта реакции). Чтобы не допустить чрезмерного разогрева, в ряде случаев следует использовать два последовательных реактора колонного типа либо применить трубчатые реакторы с внешним теплоносителем или возвратом части про-гидрированного и охлажденного продукта на вход реактора. Поскольку фракции пиролиза Сз и С4 получаются в жидком виде, целесообразно проводить гидрирование также в жидкой фазе. Ввиду высокой реакционной способности гидрируемых примесей большого соотношения водород/сырье не требуется, поэтому, как правило, циркуляция водородсодержащего газа не применяется. В реакторы подается стехиометрическое количество водорода с 10—30% избытком. К катализаторам предъявляются требования высокой селективности (гидрироваться должны только высоконенасыщенные углеводороды) и инертности по отношению к реакции полимеризации. Наиболее эффективны палладиевые катализаторы, нанесенные на окись алюминия или носители на основе окиси алюминия. [c.21]

    Новейшей конструкцией реактора полимеризации пропилена является реактор с кипящим слоем, в котором катализатор взвешен в потоке газообразного пропилена. Кипящий слой можно освободить от газовых пузырей механическими средствами. Растворитель не применяют, но катализатор вводят в виде суспензии в углеводороде. Нередко катализатор наносят на инертный носитель — полипропилен. Экономические преимущества этого способа полимеризации связаны с отказом от растворителя и непрерывным производством полимера, не требующего центрифуг и другого оборудования для выделения из раствора. Для возвращения пропилена в цикл дистилляция не нужна. Выделяющееся тепло отводится за счет испарения пропилена, который подают в виде жидкости, однако имеются трудности, обусловленные регулированием температуры и слипанием частиц катализатора. [c.204]

    Катализаторы полимеризации. Катализатором служит серная или фосфорная кислота, нанесенная на кизельгур, кварц или на другой твердый адсорбент. Были сообщения, что можно применять жидкую кислоту без носителя. [c.377]


    В алюмохромовых катализаторах носитель т]- или у-окиси алюминия имеет кристаллическую решетку типа шпинели и построен из отрицательных ионов кислорода, расположенных в плотнейшей кубической упаковке, октаэдрические и тетраэдрические пустоты которой частично заняты атомами алюминия [79], а свободные пустоты кристаллической решетки заполнены ионами Сг [80]. От адсорбированных молекул этилена возможен переход к-электронов к катализатору и освобождение их после окончания процесса полимеризации  [c.25]

    При помощи некоторых из этих веществ, несомненно, можно вполне успешно осуществить процесс в промышленном масштабе с этой точки зрения представляет интерес коротко рассмотреть, почему фосфорная кислота на носителе (катализатор полимеризации иОР) получила такое универсальное применение и почему серная кислота является другим возможным катализатором. [c.497]

    Полимеризация—процесс превращения пропилена, бутилена, а также отчасти высших олефинов в димеры и тримеры, имеющиеся в бензиновых фракциях. В качестве промышленного катализатора применяют фосфорную кислоту, либо осажденную на песчинках в виде жидкой пленки, либо пропитывающую твердый носитель. При твердом катализаторе условия процесса следующие температура 177—232 °С, давление 35—63 ат, нагрузка 1,2— [c.338]

    Получение полиэтилена при среднем давлении. В этом способе применяют окисные катализаторы, нанесенные на какой-либо активный носитель, например на алюмосиликат. Этилен вместе с инертным растворителем (уайтспирит и др.) пропускают через колонну (реактор) с катализатором. В колонне происходит контактирование этилена с катализатором. Из колонны образовавшийся полиэтилен выходит в виде раствора в жидком углеводороде, в среде которого осуществлялась полимеризация. Выходящий продукт после отделения непрореагировавшего эти- [c.95]

    В фосфорном катализаторе полимеризации определяют содержание химически связанной воды для расчета состава кислоты на носителе. [c.51]

    Широкое развитие промышленного процесса было связано со значительными ресурсами изобутана, получающегося на установках каталитического крекинга. В связи с передачей бутиленов на установки каталитического алкилирования для полимеризации стали использовать пропилен, менее в то время (в 60-х годах) дефицитный. В качестве катализатора используют фосфорную кислоту на кварцевом носителе. Полимеризацию проводят при 220— 230°С и 6,5—7,0 МПа, объемной скорости подачи сырья от 1,7 до 2,9 ч- . [c.79]

    Протонные кислоты на носителях, таких, как кизельгур, алюмосиликат и др., были изучены как катализаторы алкилирования. В их присутствии реакция протекает при повышенных температурах в паровой фазе, что приводит к полимеризации алкилирующих агентов и низкой скорости переалкилирования образующихся алкилбензолов. [c.24]

    Во многих катализаторах в качестве активного компонента выступает соединение металла, нанесенное или диспергированное на носителе для увеличения поверхности. Однако в катализаторах Филлипс оксид кремния или аналогичный носитель не является лишь подложкой, а играет существенную роль в полимеризации. Ионы хрома наиболее эффективно используются, если они покрывают малую долю поверхности оксида кремния, но наиболее эффективное использование оксида кремния достигается, когда катализатор содержит около 1 % Сг. Это показано в табл. 5, данные которой представлены графически на рис. 7. [c.182]

    Полимеризацию широко применяют для производства полимер-бензина, а также различных легких полимеров три-, тетра- и пентамеров пропилена как исходного сырья для приготовления моющих средств. Полимеризацию олефинов можно проводить в при- сутствии фосфорной, серной или фтористоводородной кислоты, фтористого бора и хлористого алюминия. Наиболее распространена фосфорная кислота на твердом носителе (кварце, кизельгуре, алюмосиликатах). Глубина превращения олефинов в присутствии катализаторов (в %) изобутилена 100 н-бутилена 90—100 пропилена 70—90 этилена 20—30. При полимеризации олефинов выделяется тепло — около 1548 кДж/кг пропилена и около 712 кДж/кг бутиленов [75]. [c.192]

    Для гетерогенного катализа газов применяют труднолетучие основания или кислоты, например, Н3РО4 или соли, которые наносят на пористые зерна носителей. Типичными являются также кислотные или амфотерные окислы (5Юг, 2г02,А120з и др.). Для некоторых сложных процессов (риформинг, полимеризация и др.) необходимы катализаторы, обладающие полифункциональными свойствами и способные вести катализ как по окислительно-восстановительному, так и по кислотно-основному механизмам [1, 3]. [c.27]

    В присутствии катализаторов селективность процесса увеличивается и тем самым повышается выход и качество целевого продукта. Наиболее широко применяемым катализатором полимеризации является фосфорная кислота иа различных носителях (кизельгур, кварц, алюмосиликаты). [c.321]


    Полимеризация. Катализатором при получении полимербензина и олигомеров пропилена и бутилена служат серная или фосфорная кислота на носителе. Кислоты могут быть использованы и в жидком виде, без носителя. В отечественной промышленности применяется катализатор — фосфорная кислота на кизельгуре (по ТУ 38-101271 — 72). Он выпускается в виде черенков темно-серого цвета и имеет следующие характеристики размер черенков 4—7 мм общее содержание Р2О5 Г)9—62%, свободного Р2О5 15—20% относительная активность >96% механическая прочность до полимеризации 18 кгс на 1 черенок. [c.326]

    Синтез стереорегулярных полимеров также осуществляется по реакции цепной полимеризации. Катализаторами этой реакции являются комплексы металлорганических соединений с галогенидами металлов переменной валентности. Иногда в качестве катализаторов используется окись хрома, нанесенная на твердый носитель (5Ю2+А120з). Проведение реакции полимеризации на твердой поверхности является пока обязательным условием получения стереорегулярных полимеров. Процесс синтеза стереорегулярных полимеров в присутствии указанных катализаторов протекает очень быстро, при обычной температуре и атмосферном давлении. Образующийся полимер имеет очень большой молекулярный вес, достигающий сотен тысяч и даже миллионов. [c.640]

    В германском патенте [62] было указано на возможность использования в качестве носителя для окиснохромовых катализаторов полимеризации ортофосфата алюминия вместо окиси алюминия или алюмосиликата. Носитель пропитывается водным раствором хромового ангидрида и активируется нагреванием на воздухе при 350—600° или в токе водорода irpu 150—300°. Содержание хрома в катализаторе находится в пределах 2—6, о в пересчете на суммарный вес катализатора и носителя. Особым преимуществом катализатора, носителем в котором служит ортофосфат алюминия, является то, что он может быть легко отделен от твердого по.лимера путем растворения в щелочи или кислоте. [c.308]

    Цепь начинается [уравнение (33)] с окислительной атаки серной кислоты по третичному водороду, что ведет к выделению двуокиси серы (при разложении иона бисульфата), которое сопровождает изомеризацию углеводородов при помощи этого катализатора [8]. Изомеризация [уравнение (34)] включает перемещение метильной группы вдоль углеродной цепи, что осуществляется весьма легко. Некоторые исследователи [75] считают возможным образование на этой стадии промежуточного циклического иона. При этом может наблюдаться также некоторое увеличение разветвленности в результате образования диметилпентанов, но в гораздо меньшей степени. Цепь развивается за счет перехода третичного атома водорода от молекулы углеводорода к одному из ионов карбония (35). На этой стадии образуется другой ион карбония, который также чувствителен к реакциям изомеризации и развития цепи. Обрыв цепи, по-видимому, сопряжен с реакцией полимеризации носителя цепи с обра-аованием сильно непредельных органических комплексов, которые накапливаются в кислотном слое [33]. [c.38]

    Универсал Ойл Продактс Компапи [13], Копперс Компани и другими компаниями проводились обширные исследования по получению этилбензола другими путями. В качестве катализатора применялась фосфорная кислота на твердом носителе, реакция проводилась в паровой фазе при сравнительно высоких давлениях. Это тот же катализатор, который широко применяется при полимеризации пропилена. Он представляет собой таблетки, содержащие твердую фосфорную кислоту на кизельгуре. [c.493]

    При полимеризации пропилена в качестве катализатора применяется фосфорная кислота на носителе. В промышленности чаще всего применяются два типа этого катализатора твердая фосфорная кислота , которая представляет собой фосфорную кислоту, нанесенную на кизельгур (РгО 8102 2НгО), и пленка жидкой фосфорной кислоты на зернах кварца. [c.104]

    Первой стадией образования кокса является возникновение на платиновых центрах монодиклических диолефинов, частично полимеризу-ющихся в полициклические с несколькими двойными связями последние мигрируют на кислотные центры носителя, где подвергаются крекингу с образованием новых ненасыщенных углеводородов, которые затем полимеризуются. Отсюда следует вывод, что падение активности алюмоплатиновых катализаторов вызывается накоплением на кислотных центрах носителя промежуточных соединений и их последующей полимеризацией. [c.38]

    Полиэтилен получают разными методами. По основному методу полимеризация проводится при температуре 190 °С и давлении 1500 ат, катализатором служит кислород в количестве 100—200 частей на миллион. В другом процессе этилен растворяют в углеводороде в раствор добавляют катализатор СГ2О3 на алюмосиликатном носителе температура процесса 93—150 °С, давление от 7 до35ат. Суспензия содержит около 5% этилена и 0,5% катализатора. По-новому, недавно появившемуся методу этилен [c.333]

    Синтетические алюмомагнийсиликатные катализаторы при формовании микросфер или крупных шариков получают совместным осаждением гидрогелей окиси кремния и окиси магния с последующей активацией их раствором сернокислого алюминия. Эти катализаторы выгодно отличаются от алюмосиликатных высокой паротермостабиль-ностью. Они могут быть использованы также как носители для катализаторов полимеризации этилена. [c.14]

    II выше. Алюмомагнийсиликатные катализаторы обладают более высокой регенерационной способностью, так как на их поверхности горение кокса протекает гораздо интенсивнее, чем на алюмосиликатных катализаторах, и имеют высокую паротермостабильность в реакциях крекинга нефтепродуктов. Алюмомагнийсиликатные катализаторы могут быть использованы также как носители при приготовлении окиснохромовых катализаторов для полимеризации этилена. [c.97]

    Наиболее распространенным катализатором для этого процесса является фосфорная кислота на твердом носителе (широкопористый силикагель, алюмосиликат). Выбор параметров процесса наряду с отмеченными ранее факторами обусловлен экономическими соображениями, особенно снижением энергетических затрат на получение пара и рециркуляцию непревращенных веществ. Температура противоположным образом влияет на равновесие и на скорость кроме того, ее повышение ведет к усиленной полимеризации олефина и уносу фосфорной кислоты с носителя. Поэтому гидратацию этилена ведут при 260—300°С, когда для поддержания нужной концентрации Н3РО4 в поверхностной пленке катализатора требуется высокое парциальное давление водяного пара (2,5—МПа). Чтобы повысить степень конверсии водяного пара, получгть не слишком разбавленный спирт и этим снизить расход энергии, работают при некотором избытке этилена [(1,4ч-1,6) 1]. Это п11едопределяет выбор общего давления 7—8 МПа, когда рав-новес ая степень конверсии этилена равна 8—10%. Однако фактическую степень конверсии поддерживают на уровне 4%, что позволяет работать при достаточно высоких объемной скорости (2000 ч ) и удельной производительности катализатора по спирту [180—220 кг/(м -ч)], получая после конденсации 15%-ный эта но . [c.191]

    Недавно пропиточный метод приготовления катализаторов гидроочистки светлых фракций Г.Н.Маслянский и др. упростили за счет применения способа пропитки по влагоемкости и повышения pH в растворах. Повышение pH раствора уменьшает степень полимеризации анионов молибдена до мономера Мо04 , модифицирует поверхность носителя, который играет роль буфера и способствует более тесному взаимодействию солей молибдена, кобальта или никеля. [c.178]

    Следует отметить, что существуют методы синтеза полиэтилена и без применения металлорганических катализаторов. Так, например, американская фирма Филлипс [15] разработала катализатор из СГзОд на носителе из SiO.j и AljOg. Процесс полимеризации этилена в полиэтилен (с 100% превращением) проводится при 135— 190° и 35 ат в присутствии таких растворителей, как н-пентан или н-октан. Продукт полимеризации известен под маркой марлекс . Он плавится при 113 —117 , имеет молекулярный вес 5000—30 000 [c.596]

    С самого начала промышленного примепения полимеризации делались попытки применять жидкую фосфорную кислоту на различных носителях, но ни одна из этих попыток не привела к созданию такого удачного катализатора, каким является твердая кислота. Однако в 1937 г, была построена установка,, в которой применялась жидкая фосфорная кислота на кварце [2]. В течение многих лет проводились работы по усовершенствованию этого процесса, и затем было построено и введено в действие несколько таких установок. В основе процесса лежит идея приготовления катализатора непосредственно в реакторе, где носитель пропитывается жидкой фосфорной кислотой -затем избытку кислоты дают стечь и вводят олефиновое сырье. Принимая во внимание сравнительно небольшую удельную по- [c.238]

    В создании иоверхностно-активных структур в гетерогенном катализе важную роль играет координация. Активность окионо-хромовых катализаторов иа носителях в реакции полимеризации этилена лропорциональна. концентрации ионов Сг +. Активными центрами полимеризации служат ионы Сг5+ в тетраэдрической ко- [c.170]

    Разработаны и предложены оригинальные схемы роста полимерной цепи в условиях контролируемой радикальной полимеризации виниловых мономеров в условиях металлоорганического катализа. Установлено, что а-метилстирол-хромтрикарбонил позволяет проводить контролируемую радикальную полимеризацию метилметакрилата и некоторых других мономеров в энергетически выгодных режимах, полностью подавляя гель-эффект и целенаправленно регулируя молекулярно-массовые характеристики полимера. Получен гетерогенный катализатор на пенокерамическом носителе ХИПЕК , промотированный продуктами распада ацетилацето-натов Си и Со. [c.17]

    В большинстве случаев катализаторы применяются в твердом состоянии в виде шариков или таблеток, а в процессах с кипящим слоем в пылевидном состоянии. В этой главе рассматриваются некоторые вопросы анализа и испытания распространенных твердых катализаторов алюмосиликатного для каталитического крекинга, алюмомолибденового для гидроформинга, алюмокобальтмолибде-нового для гидроочистки, фосфорнокислотного для полимеризации и алкилирования, платинового для платформинга и активной окиси алюминия, применяемой для гидратации и дегидратации, а также в качестве носителя для многих катализаторов. [c.304]

    Полимеризация пропилена осуществляется в основном на твердом фосфорнокислотиом катализаторе (фосфорная кислота иа кизельгуровом носителе), наиболее эффективном и широко используемом в США [8], а также в Европе [42]. [c.403]


Смотреть страницы где упоминается термин Полимеризация с катализаторами на носителях: [c.543]    [c.202]    [c.82]    [c.705]    [c.708]    [c.243]    [c.55]    [c.105]    [c.167]    [c.168]    [c.622]    [c.323]    [c.315]    [c.359]    [c.136]    [c.136]   
Смотреть главы в:

Полимеризация на комплексных металлоорганических катализаторах -> Полимеризация с катализаторами на носителях




ПОИСК





Смотрите так же термины и статьи:

Катализатора носители

Катализаторы полимеризации

Полимеризация олефинов на комплексных катализаторах на носителях



© 2025 chem21.info Реклама на сайте