Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анионы поляризация

    Поскольку размеры анионов, как правило, больше размеров катионов, то анионы обладают большей поляризуемостью и меньшей поляризующей способностью, чем катионы. Поэтому при взаимодействии катиона с анионом поляризации подвергается преимущественно анион поляризацией катиона в большинстве случаев можно пренебречь. [c.68]

    В результате поляризующего действия ка-тиона внешнее электронное облако аниона поляризации, [c.153]


    Для оценки гидравлической системы с точки зрения деполяризации могут быть использованы рассуждения о критических деполяризационных скоростях, приведенные в гл. I. Такую оценку можно сделать определением коэффициента k из уравнения (1.3), которое связывает толщину диффузионного слоя со скоростью потока. Наименьшие значения k соответствуют эффективной деполяризации. Из результатов, полученных Розенбергом и Теореллом [R16], была рассчитана величина k для аппаратов лабиринтного типа, равная приблизительно 0,016 см кек. При расчетах за основу были приняты анионная поляризация, определенная ими опытным путем, и числа переноса t = 0,95 и = 0,62 для хлористого натрия с применением высокоселективных мембран. [c.203]

    Таким образом, анионы в сравнении с катионами характеризуются сильной поляризуемостью и слабой поляризующей способностью. Поэтому при взаимодействии разноименных ионов поляризации подвергается главным образом отрицательный ион поляризацией положительного иона в большинстве случаев можно пренебречь. [c.153]

    Влияние на поляризацию аниона его размеров, а также размеров и заряда катиона иллюстрируется схемой, изображенной на рие. 55. Рис- 56. Смещение [c.153]

    Комбинация катодной поляризации с анионными ингибиторными добавками не дает результатов. Повышение эффективности действия этих добавок возможно в результате анодной поляризации. [c.366]

    Изучение явлений, связанных с сильной поляризацией обратных и прямых эмульсий (капель касторового масла в среде ПМС-100 и капель ПМС-100 в среде касторового масла), позволило обнаружить различие в их поведении. Скорость капель (д<0,5 10" м) обратных эмульсий значительно возрастает в приэлектродных областях. Контакт их с электродом приводит к возникновению колебания в межэлектродном пространстве. Частота колебания имеет затухающий характер. Это можно объяснить электрохимическим разрядом растворимых в капле (касторового масла) катионов и анионов жирных кислот. Движение капель прямых эмульсий при подходе к электроду, наоборот, замедляется и полностью прекращается на некотором расстоянии от электрода. Зазор между электродом и каплей 5 при ее остановке сокращается с повыще-нием Е. Остановку капли у электрода (эффект расклинивания) можно объяснить диэлектрическим перемещением молекул более полярной среды в неоднородную область поля. Экспериментальная зависимость скорости движения капли прямой эмульсии от напряженности поля показывает, что при низких значениях Е зависимость имеет линейный характер, при Е>2 10 В/м характер зависимости меняется. Аналитическая обработка экспериментальных данных по уравнению Духина для скорости частицы показывает, что зависимость 1 наблюдается только в области значений ">3 10 В/м. [c.23]


    Активационная поляризация определяет также кинетику осаждения или растворения металла. Она мала для таких металлов, как серебро, медь, цинк, но возрастает для металлов переходной группы, например железа, кобальта, никеля, хрома (см. табл. 4.1). Природа анионов электролита больше влияет на перенапряжение процессов разряда и ионизации металла, чем на реакцию выделения водорода. [c.53]

    Любой способ стабилизации ионов путем делокализации заряда, будь то за счет групп, входящих в состав иона или за счет сольватации, разумеется, тем эффективнее, чем значительнее смещение электронов к катионному центру или от анионного центра. Такая делокализация, однако, не должна переходить некоторые пределы, за которыми происходит разрыв старых или образование новых ковалентных связей. Один подобный пример мы видели с т./ ет-бутильным катионом (26) при неблагоприятных для существования этого иона условиях происходит разрыв С—Н-связи (той самой, поляризация которой обеспечивает делокализацию заряда) и выброс протона, т. е. разрушение карбкатиона. Можно привести и другой пример. Атомы хлора способны весьма эффективно оттягивать электроны и потому, казалось бы, хоро- [c.75]

    Нитроэтилен чрезвычайно легко полимеризуется по анионному механизму вследствие сильной поляризации двойной связи каталитическое действие оказывают уже ОН "-ионы воды. [c.941]

    Есть основание предполагать, что полимеризация дивинила ь присутствии натрийорганического соединения также подчиняется закономерностям анионной полимеризации. Процесс активации заключается в поляризации части молекул мономера с образованием начального центра полимеризации  [c.231]

    В некоторых случаях на структуру осадка влияет природа аниона простой соли выделяемого металла. Например, осадки свинца из азотнокислых и уксуснокислых (без добавок) растворов всегда крупнозернисты, в то время как из растворов борфтористо-. водородных, кремнефтористоводородных и перхлоратных солей выделяются мелкозернистые осадки, особенно в присутствии поверхностно-активных веществ. В последних электролитах наблюдается заметная поляризация, в то время как в первых она почти отсутствует. [c.342]

    Влияние посторонних солей на катодный процесс при электроосаждении металлов (N1, С(1, 2п и др.) было впервые исследовано Н. А. Изгарышевым с сотр. [9]. Ими было установлено как тормозящее (повышение поляризации), так и ускоряющее (понижение поляризации) действие посторонних катионов и анионов на электроосаждение металлов в зависимости от их природы и состава растворов. [c.343]

    Влияние поверхностно-активных веществ. Большое влияние на структуру электролитических осадков оказывают органические вещества и некоторые анионы, обладающие поверхностно-активными свойствами. В зависимости от природы и концентрации этих веществ осадки на катоде получаются мелкозернистыми, плотными, гладкими и блестящими или, наоборот, губчатыми — порошкообразными. В большинстве случаев изменение структуры осадков в присутствии органических веществ сопровождается повыщением катодной поляризации и замедлением процесса электроосаждения металлов. Механизм такого влияния органических добавок различен в зависимости от природы добавляемого вещества, состава и свойств электролита. [c.345]

    А. Т. Ваграмян с сотр. [42] показал, что образующаяся на катоде в процессе электролиза пленка, наоборот, способствует восстановлению хромат-ионов до металла. По данным авторов, в чистом растворе хромовой кислоты электроды из хрома, железа, никеля, кобальта или других металлов покрываются прочной окисной пленкой, которая препятствует восстановлению ионов хрома даже при поляризации катода до высокого электроотрицательного потенциала. В этих условиях выделяется только водород, причем при повышенном перенапряжении. Восстановление хромат-иона на этих электродах возможно только в присутствии небольшого количества указанных выше анионов, которые служат как бы катализаторами процесса. При этом в зависимости от потенциала изменяется как характер, так и скорость электрохимических реакций. Последнее иллюстрируется поляризационными кривыми, полученными потенциостатическим методом в растворе [c.415]

    Для получения блестящих осадков серебра предложено добавлять к цианистому электролиту (не содержащему NO3), поверхностно-активные вещества, относящиеся к различным классам и группам органических соединений, а также соли некоторых металлов сурьмы, селена, теллура. Из них применение получили главным обр азом серосодержащие органические вещества. В присутствии серосодержащих добавок катодная поляризация значительно уменьшается. Возможно, что эти добавки лучше адсорбируются поверхностью серебра, чем анионы N , вытесняя последние с поверхности катода. Благодаря этому устраняется торможение разряда Ag( N) , вызываемое адсорбцией ионов N . [c.423]

    Катионная и анионная поляризация применяются как для растворов собира телей — ксантогенатов, жирных кислот, так и для регуляторов — сернистого нат рия, жидкого стекла, фосфорной кислоты и других, что обеспечивает перевод ре агентов в более активную форму, снижает расход и повышает технологически -показатели флотации [128, 150]. При электрохимической обработке пульп эф фект активации реагентов и поверхности флотируемых минералов может допол няться выделением из воды микропузырьков водорода и кислорода [140]. Обла дая определенным зарядом и взаимодействуя с тонкими частицами, пузырьк электролитической флотации могут значительно активизировать флотируемост тонких классов, а также коллоидных частиц и ионов. [c.132]


    Для подобных процессов принимают так называемый криптоионный механизм, при котором катализатор вызывает поляризацию молекулы хлора. В дальнейшем хлорирование протекает согласно общему химизму катионного замещения, т. е. в результате соединения хлор-аниона с протоном или углеводородного аниона с катионом хлора [c.153]

    Систематические исследования влияния состава раствора на кинетику электроосаждеиия металлов (Зылп начаты в 1917 г. Н. А. Изгарышевым. Было установлено, что при катодном выделении металлов из растворов их простых солей существенное значение имеет природа аниона соли. Влияние природы аниона на перенапряжение и на характер образующихся осадков наблюдается для многих металлов, но наиболее сильно оно проявляется для металлов, выделение которых не сопровождается высокой поляризацией. Обычно перенапряжение уменьшается при переходе от одного аниона к другому в следующем порядке  [c.461]

    Решение. Ион Il , имеющий 17-электроииую внешнюю оболочку и сравнительно небольнюй радиус (0,08 нм), обладает сильным поляризующим действием, а большой по размеру ион ]- (г = 0,22 нм) характеризуется высокой поляризуемостью. Поэтому поляризация аниона I катионом Си + приводит к полному переходу электрона от аннона к катиону ион Си + восстанавливается до Си+, а нон I окисляется до свободного иода. Соединение ub не существует. [c.69]

    Анодный сдвиг потенциала в поверхностном слое металла и пассивность последнего могут быть обусловлены активированной адсорбцией (хемосорбцией) пассивирующих частиц, в первую очередь пассивирующих анионов, в особенности однозарядного атомного иона кислорода 0 (анион радикала ОН, образующегося из НаО или ОН при анодной поляризации). Адсорбция ионов кислорода уменьшает свободную энергикэ поверхностных ионов металла за счет вытеснения эквивалентного количества свободных поверхностных электронов металла, т. е. создает пассива-ционный барьер. Поскольку поверхностный электронный газ вырожден, вытесняются электроны, находящиеся на самых высоких электронных уровнях, и при этом снижается поверхностный уровень Ферми металла. Изменение свободной энергии поверхности при полном ее покрытии адсорбированным монослоем составляет 3,8-10 эрг на один электрон, что соответствует 2,37 эВ, или 54,6 ккал/г-экв. [c.311]

    По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. Н2804 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии. [c.366]

    Так как для анионов характерны большие размеры и йаяыЙ заряд, а их электронная структура, как правило, отвечает структуре благородного газа, то поляризующее действие аниона на катион обычно 1 евелико, поэтому им часто можно пренебречь, т. е. считать, что поляризация носит односторонний характер. Если, однако, катион легко деформируется, то возникший в нем диполь усиливаёт его поляризующее действие на анион анион в свою очередь оказывает дополнительное действие на катион и т. д. Это приводит к появлению дополнительного поляризационного эффекта, который тем больше, чем значительнее поляризуются катион н анион. I [c.113]

    Увеличение стягивания иопов в результате их поляризации приводит к тому, что длина диполя оказывается меньше межъядерного расстояния (так, длина диполя в молекуле КС1 равна 167 пм, в то время как межъядерное расстояние составляет 267 пм). Это различие особенно велико у водородосодержащих соединений. Если пренебречь размерами иона водорода, то в предположении чисто ионной связи расстояние между ядрами во- дорода и галогена должно равняться г -. Однако < г -для всех Э, так, Гс,-= 181 пм, а н- i = 127 пм. Это означает, что в отличие от других катионов протон проникает внутрь электронной оболочки аниона. Внедрившись в анион, протон оказывает сильное поляризующее действие, что приводит к резкому уменьшению полярности водородных соединений (по сравнению с аналогичными соединениями других катионов). Поляризационный же эффект приводит к тому, что длина диполя НС1 составляет -всего 22 пм. Наконец, проникновение протона внутрь аниона обусловливает уменьшение деформируемости последнего. [c.113]

    Поляризация ионов, представляющая собой ту или иную степень смещения электронов, имеет очень большое значение, так как она, приводя к сокращению межатомных расстояний и, как следствие, к уменьшению дипольиого момента, превращает ионную связь в полярную ковалентную. С увеличением деформируемости аннона может произойти полный переход электронов от него к катиону, т. е. образуется ковалентная связь. Наоборот, чем меньше поляризация иона (например, аниона), тем ближе соединение к ионному типу. Так как поляризация резко увеличивается с ростом заряда ионов, то становится очевидным, что среди соединений Типа А В " или АгВ и тем более А " В (или Аз В ) ие может быть веществ с чисто ионным типом связи. [c.113]

    Повышение температуры обычно способствует поляризации. Так как нагревание увеличивает амплитуду колебаний ионов и тем самым сближает их, то оно может привести к перестройке структуры вещества, происходит полиморфное превращение (см. разд. 3.2). Не исключена, возможность того, что нагревание, вызовет полный переход электрона (электронов) от аниона к катиону. В результате произойдет термическая диссоциация вещества. Чем сильнее поляризация (поляризующее действие), тем ниже температура диссоциации. Например, температура разложения понижается в ряду соединений данного катиона M I — MI и данного аниона NaP — Lif. Другой пример если разложение СаЬ требует высоких температур, то реакция Аи1з = Аи1 + + Ь происходит при низких температурах при еще более низких температурах долж а идти диссоциация СиЬ, поэтому в обычных условиях это вещество не существует. [c.114]

    Диаграммы указывают условия образования на поверхности электрода диффузионно-барьерных пленок, но не содержат данных об их защитных свойствах в присутствии специфических анионов, таких как ЗО или СГ. Они не содержат также сведений о возможности образования пленок нестехиометрического состава (некоторые из этих пленок существенно влияют на скорость коррозии — см. гл. 5, однако отчетливо показывают природу стехиоме-трических соединений, в которые при достижении равновесия могут превратиться любые менее устойчивые соединения. Учитывая вышеупомянутые ограничения, диаграммы весьма полезны для описания равновесных состояний системы металл—вода в кислых и щелочных средах как при наложении внешней поляризации, так и без нее. Диаграммы Пурбе для железа приведены и обсуждаются в приложении 3. [c.39]

    Для проверки применимости электрохимической теории коррозионного растрескивания был поставлен специальный эксперимент. Он заключался в измерении критического потенциала инициирования КРН нержавеющей стали 18-8 в кипящем при 130 °С растворе хлорида магния с добавками и без добавок ингибирующих анионов [22]. Анодная поляризация тем скорее вызывает растрескивание, чем положительнее потенциал катодная поляризация, наоборот, увеличивает время до растрескивания. При потенциале ниже критического значения —0,145 В сплав становится практически устойчив (рис. 7.5, а). Добавление различных солей (например, СНдСООНа) к раствору Mg l2 повышает критический потенциал. Когда критический потенциал становится положительнее потенциала коррозии, КРН прекращается (рис. 7.5, Ь). Следовательно, если критический потенциал равен потенциалу анода разомкнутой цепи, характеризующему катодную защиту, при которой скорость коррозии равна нулю (см. разд. 4.10), потенциал коррозии не может быть ниже критического. Однако, ввиду того что критический потенциал может быть и ниже, и выше потенциала коррозии, он должен иметь другое объяснение. [c.140]

    Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию. [c.319]

    С увеличением потенциала поляризация анионов увеличивается, а б уменьшается, что еш,е сильнее сказывается на асимметрии электрокаииллярной кривой. При больших потенциалах могут поляризоваться и катионы. В результате лш1ейная зависимость <7 от ср, соответствующая теоретической электрокапиллярной кривой, в реальных системах наблюдается обычно в области, близкой к точке нулевого заряда, а вдали от нее эта зависимость нарушается. [c.52]

    Активные в процессе анионной полимеризации мономеры содержат электроотрицательные (электроноакцепторные замести-гели. На реакционную способность мономеров в этом процессе оказывает влияние их строение и главным образом степень поляризации двойной связи. По убыванию реакционной способности чономеры располагаются в следующем порядке  [c.139]

    Как отмечалось, анионная полимеризация является регули руемым проп.ессом. Первые достижения в. этой области относятся к получению полибутадиена регулярного строения (с преимуще-с.твенн1, м содержанием 1,4-структур). Этот полимер получен А. Мортоном при полимеризации бутадиена под влиянием алфи-нового катализатора, состоящего из фенилнатрия и хлористоп. натрия . Можно предположить, что направленность реакции роста макроаниона в сторону присоединения мономера с образо ванием 1,4-структур связана с адсорбцией бутадиена на поверхности нерастворимого алфинового катализатора и последующей поляризацией мономера. Таким образом, образование полибу тадиена регулярного строения в присутствии алфинового ката лнзатора является следствием гетерогенности системы. [c.143]

    Ингибиторы экранирующего действия являются слабо- или неполярными соединениями (синтетические жирные кислоты и их соли с дицикло-гексила -ммном или карбамидом, другие кислородные соединения). На поверхности металла может происходить поляризация молекулы ингибитора, раздельная сорбция катионной и анионной частей соединения с уменьшением или увеличением энергии выхода электронов из металла и проявлением электронодонорно-акцепторных свойств. Образуются комплексные соединения с металлами, которые не только тормозят электродные реакции электрохимической коррозии, но и образуют адсорбционные и хемосорбционные пленки на металлах. [c.59]

    В щелочноцианистых электролитах цинк и кадмий находятся в виде комплексных анионов типа Ме(СЫ) . Кроме того, цинк присутствует в растворе, содержащем щелочь, в виде 2п(0Н) . Для восстановления этих ионов требуется повышенная катодная поляризация, которая наиболее резко выражена при большом [c.376]

    В пирофосфатных электролитах металл находится в виде комплексных анионов преимущественно типа Ме(Р207)2. Катодная поляризация в пирофосфатных электролитах выражена резче [c.379]

    Высокая катодная поляризация, особенно при большом избытке РоО , обусловлена, по данным ряда исследователей, замедленной скоростью поступления комплексных анионов и пассивированием катодной поверхности вследствие адсорбции Р2О7 или образования окисных (Си О и др.) и солевых пленок. [c.402]

    Аиион Ад(СЫ) представляет собой диполь, вследствие чего он адсорбируется катодом ( рис. 14). Аналогичную структуру имеют анионы 2пОг и др. В условиях катодной поляризаций происходит деформация аниона, сопровождаемая выходом электрона из катода, и то достижении критической величины напряженности электрического поля следует раз рыв аннона с присоединением атома серебра к кристаллической решетке или к зародышу. Освободившиеся анионы СЫ выбрасываются под воздействием электрического поля, повидают двойной слой и открывают доступ новым порциям комплексных 11 анионов. Не следует забывать, что [c.32]


Смотреть страницы где упоминается термин Анионы поляризация: [c.122]    [c.153]    [c.67]    [c.303]    [c.153]    [c.589]    [c.177]    [c.161]    [c.77]    [c.152]    [c.342]    [c.28]   
Курс химического качественного анализа (1960) -- [ c.35 ]

Курс химического и качественного анализа (1960) -- [ c.35 ]




ПОИСК







© 2024 chem21.info Реклама на сайте