Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение характеристик систем С обратными связями

    Отношение амплитуд и сдвиг по фазе выходного сигнала являются определенными функциями частоты синусоиды на входе эти функции следует искать в широких пределах поддающихся оценке частот. Однако достаточно изучить их только на разомкнутой системе (обратная связь отсутствует), т. е. не рассматривая влияния на процесс обратной связи. Замкнутая система, изображенная на рис. УП1-1,б, которая используется для изучения переходных характеристик, содержит те же элементы, что и разомкнутая система. [c.102]


    Применение разомкнутой системы возможно потому, что существуют графические методы определения влияния обратной связи и регулятора на частотные характеристики всей системы. В случае переходных характеристик уравнения следует решать для каждого отдельного исследуемого случая. Основным при этом является составление полных уравнений процессов, происходящих в замкнутом контуре. Их решение требует весьма сложного математического аппарата. [c.102]

    Сигнальные графы весьма полезны при анализе сложных ХТС, при выводе основных соотношений теории обратной связи, а также при исследовании той роли, которую выполняет какой-либо отдельный параметр во всей системе. Структурная блок-схема оказывает помощь при анализе характеристик элементов ХТС. После того как из результатов расчета становится известной структурная блок-схема системы, необходимо в отдельности реализовать коэффициенты функциональных связей отдельных блоков, входящие в матрицы преобразования соответствующих элементов. Применение сигнальных графов обеспечивает гибкий метод определения большого разнообразия технологических схем, эквивалентных данной системе. Таким образом, хотя общий метод синтеза для реализации заданной передаточной функции ХТС отсутствует, сигнальные графы значительно облегчают синтез системы. [c.169]

    МГц,не выявили зависимости электрического сопротивления от частоты измерения для всех фракЦий, что объясняется отсутствием скин-эффекта у порошковых систем. Вольтамперные характеристики системы, снятые на частоте 1600 Гц,подчинялись закону Ома без каких-либо отклонений. На температурных зависимостях изменения электросопротивления для всех фракций при температуре выше 350"С отмечается увеличение удельного электросопротивления с ростом температуры, что, по-видимому, связано с наличием металлического типа проводимости. При более низких температурах был обнаружен обратный тип зависимости. При этом для ряда фракций (113, 74, 45 мкм) наблюдается плато в области температур 280-320"С. Перечисленные факты позволяют предположить, что система в определенном интервале температур обладает полупроводниковой проводимостью, присущей ряду соединений никеля. [c.85]

    Усовершенствованием схемы классического потенциостата являются в последние годы схемы электронных потенциостатов, в которых происходит быстрое автоматическое регулирование потенциала одного из электродов системы. Схема электронного потенциостата включает в себя усилитель постоянного напряжения с обратной связью, обеспечивающий автоматическое поддержание заданного значения потенциала. Обычно в комплект потенциостата входит потенциометр на входе для навязывания определенного потенциала и блок противотока, обеспечивающий снятие поляризационных характеристик того или иного знака и устойчивое прохождение нуля тока. Варианты различных электронных потенциостатов в основном различаются схемами усилителя постоянного напряжения, главными критериями которого являются крутизна усиления (точность измерения), быстродействие (скорость регулирования) и максимальный выходной ток [266, 279, 282—291]. Большое количество потенциостатических поляризационных кривых в нашей стране было снято с помощью электронных потенциостатов, схемы которых приведены в работе [290]. [c.182]


    Величина H(f)—общая частотная характеристика линейной системы с цепью обратной связи, связывающая x(t) и y(t), которая может быть определена по наблюдениям только x(t) и y(t). При этом, конечно, произведение Hi(f)H2(f) не должно равняться —1 на всех частотах. Экспериментальное определение Hi(f) и Hid) невозможно, если величина u(t) не наблюдается. Разумеется, если Hi f) или Яг(/) известна или есть основания предполагать, что Hi(f) или HzQ) имеет тот или иной вид, то тогда другую величину можно найти. [c.103]

    Пусть имеется сложная многоконтурная система (рис. 111-15), состоящая из многих элементов, в каждом из которых содержится источник шума. Как и ранее, предполагается, что нельзя непосредственно получить исчерпывающие характеристики шума, возникающего в произвольном элементе системы. Считая элемент линейным, необходимо найти его весовую функцию на основании записей реализаций, полученных в определенных точках системы. Как и для объекта, не охваченного обратными связями, возникает вопрос о том, в каких точках системы нужно записать реализации и сколько таких реализаций потребуется для подсчета весовой функции. [c.199]

    Другие ошибки при определении распространенности изотопов могут быть связаны с характеристиками регистрирующей системы. Некоторые типы детекторов, подобных электронному умножителю, являются сами по себе дискриминаторами масс. Высокие омические сопротивления (10 —10 . ом), используемые обычно при измерении малых токов, поляризуются, когда напряжение на них превышает несколько вольт, что может привести к ошибкам в определении отношения. Поэтому усиление может зависеть от величины сигнала, и для устранения этого явления обычно в схему включают отрицательную обратную связь с глубоким охватом. Нелинейность может возникать также в регистрирующей системе. Например, в нашей лаборатории для измерения ионных пучков средней интенсивности часто используется система, в которой гальванометр [c.81]

    ДЕТАЛЬНОГО РАВНОВЕСИЯ ПРИНЦИП в химической кинетике, связывает кинетич характеристики прямого и обратного микроскопич процессов (квантового перехода или элементарной хим р-ции), происходящих при соударениях частиц (атомов, молекул) В рамках динамич описания системы взаимодействующих частиц, при к-ром вероятность процесса определяется энергией каждой частицы, изменение энергии при соударениях характеризуется сечением перехода илн сечением р-ции (см Столкновений теория) Переходы частицы из начального квантового состояния а в конечное Ь и обратно происходят при определенных значениях энергии относит движения частиц (соотв Щ и i) Внутр энергия частицы в обоих рассматриваемых состояниях (соотв и j) связана с и законом сохранения [c.25]

    Обычно для идентификации карбонилов металлов используют инфракрасные спектры. Частота валентных колебаний связи углерод—кислород и характеристика карбонильной группы довольно сильно зависят от металла и свойств симметрии дюлекулы карбонила металла, поэтому большинство соединений легко можно идентифицировать. Форма, волновое число и интенсивность максимума поглощения часто хорошо согласуются с теоретическими представлениями о молекулярной структуре. Относительно инфракрасных спектров карбонилов металлов имеется обширная литература [108]. Вообще все карбонилы металлов имеют по крайней мере один максимум поглощения в области 2000 см , который отражает взаимодействие металл — СО. Есл и в соединении имеется мости-кообразующая карбонильная группа, неизменно наблюдается полоса валентных колебаний прп 1800 но обратное не всегда справедливо, так как возможны различные типы резонансного взаимодействия. Точное расноложение максимумов несколько зависит от типа растворителя, используемого при снятии спектра, наиболее четкие формы получаются в случае неполярных углеводородов. Общая картина спектра определенного карбонила металла зависит также от оптической системы прибора. Следовательно, если требуется сравнивать экспериментальные спектры со спектрами, имеющимися в литературе, целесообразно использовать сравнимые растворители и оптические системы. [c.121]

    Однако формулировка прямой задачи подразумевает наличие данных о потенциальной функции молекулы, а основным и в большинстве случаев единственным источником сведений о потенциальной функции являются значения частот нормальных колебаний. Тем самым возможности тех приложений теории колебательных спектров, которые требуют решения прямой задачи, ставятся в зависимость от успеха в решении обратной задачи, как принято называть задачу восстановления потенциальной функции по данным о ее колебательном спектре. В спектрохимических же исследованиях результаты решения обратной задачи — значения силовых постоянных — представляют непосредственный интерес, и именно их получение является обычно поводом к проведению теоретического расчета спектра. Силовые постоянные представляют собой параметры, характеризующие свойства электронной системы молекулы, причем характеристика эта дифференцирована по отдельным структурным элементам молекулы связям, углам, группам атомов. Этим силовые постоянные выгодно отличаются от частот, характеризующих молекулу в целом, так как в общем случае частоты являются функциями одновременно всех силовых постоянных и кинематических параметров молекулы и могут непосредственно использоваться лишь при решении задачи идентификации вещества. Неоднократно демонстрировались и широко используются корреляции силовых постоянных с энергией и порядком связей, электроотрицательностью атомов и радикалов, наличием в молекуле сопряжения и т. п. Потенциальная энергия, фигурирующая в задаче о колебаниях ядер, является, вообще говоря, суммарной энергией электрон-яд ерного, электрон-электронного и ядерно-ядерного взаимодействия и может быть определена при решении соответствующей квантовомеханической задачи. С этой точки зрения решение обратной колебательной задачи является экспериментальным определением той же величины, и полученные таким образом данные представляют важный резерв теории электронного строения молекул. [c.13]


    Статическую характеристику у = 1(х]) системы элементов, включенных по принципу обратной связи, несложно построить графическим способом, если известны графики функций 1 и /г-Пусть эти функции имеют вид, показанный на рис. П.7. Для определенности примем, что элементы включены по принципу отрицательной обратной связи, т. е. хз = Х —Х2. Зададимся произволь- [c.42]

    Рассмотрим объект без обратных связей с одним входом и одним выходом (рис. VII, 10), Определение динамических характеристик такого Объекта основано на связи взаимнокорреляционных функций входного и выходного сигналов и шума, корреляционной функции входного сигнала и импульсной функции системы  [c.181]

    Таким образом, каждому положению поршня сервомотора и регулирующего клапана соответствует определенное положение муфты регулятора скорости. Следовательно, в этой схеме, как и в схеме прямого регулирования, интервал изменения скорости вращения вала агрегата, соответствующий изменению нагрузки от холостого хода до максимальной, определяется степенью неравномерности регулирования. Отметим особенность этой схемы, заключающуюся в том, что структура связи 5 иная, чем в схеме прямого регулирования. В последнем случае регулятор действует только на клапан — эта связь называется прямой, поскольку она передает воздействие в прямом направлении от регулятора к машине. В схеме на рис. 3-7 есть и связь от серво-.мотора к золотнику. Эта связь называется самовыключением сервомотора, или обратной связью, так как, передавая импульс в обратном направлении, противодействует распространению прямого воздействия. При прямом регулировании (см. рис. 3-2) обратная связь осуществляется через саму машину. Наличие самовыключения позволяет улучшить динамические характеристики системы. [c.95]

    Однако смеситель не может полностью компенсировать изменения качества p t) материала в подводимом потоке. При выборе размеров аппарата сталкиваются с необходимостью компромисса между его стоимостью и характеристикой. С одной стороны, аппарат должен обладать минимальной удерживающей способностьк> W (экономия продукта), а с другой стороны, удерживающая способность должна быть достаточной для качественного выполнения операций (качество продукции). Как будет показано ниже, включение звена запаздывания в цепь обратной связи системы регулирования может привести к снижению запаса устойчивости этой, системы. В рассматриваемом процессе перемешивания это объясняется наличием запаздывания, которым обладают смесители. Для определения величины W необходимо знать характер изменения качества p (i) материала в потоке, поступающем в смеситель. [c.51]

    Система с обратной связью является замкнутой. Характеристика объекта дГв ых = /( > 2) зависит как от его собственной ( естественной ) характеристики лТдых = / ( )> так и от характеристики воздействия регулятора, называемой регулировочной характеристикой г = / (л ). Регулировочная характеристика В (рис. 5), отражающая закон изменения регулирующего сигнала г для получения заданной характеристики Б объекта, строится графически путем нахождения на характеристиках Г регулятора точек с новыми заданными значениями х при определенных значениях Р. [c.7]

    Теоретическое исследование системы газ — адсорбент следует начать с термодинамического описания адсорбционной системы. В этом макроскопическом описании не> учитываются непосредственно ни структурные особенности адсорбента и адсорбируемых молекул, ни особенности межмолекулярных взаимодействий между ними. Для установления связи с этими особенностями адсорбционной системы, т. е. для рассмотрения ее на молекулярном уровне, необходимо привлечь молекулярно-статистическое описание системы газ — адсорбент. В более простых случаях — для однородных адсорбентов и малых заполнений поверхности — на основании сведений о межмолекулярных взаимодействиях и о структуре и химической природе адсорбента и адсорбируемых молекул будут проведены количественные расчеты измеряемых хроматографическими, статическими и калориметрическими методами термодинамических характеристик адсорбции. Далее будет описано решение обратных задач, т. е. определение некоторых структурных параметров молекул на основании измеряемых с помощью газовой хроматографии термодинамических характеристик адсорбции при малых (нулевых) заполнениях поверхности (хроматоструктурный анализ, хроматоскопия). Наконец, будут рассмотрены некоторые простые модели межмолекулярных взаимодействий адсорбат—адсорбат, чтобы продвинуться в область более высоких заполнений поверхности и описать фазовые переходы для двухмерного состояния адсорбированного вещества. [c.127]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]

    Описание вязкостных свойств полимерных систем, в форме не зависящей от температуры, имеет важное практическое значение, так как существенно облегчает расчет вязкости и может избавить от необходимости ее опытного определения. Такая температурноинвариантная характеристика полимерных систем получается. при рассмотрении зависимости приведенной вязкости от параметра, определяющего интенсивность деформационного воздействия на полимерные системы. Мерой этой интенсивности может служить соотношение скорости деформации и скорости рассасывания напряжений в деформируемой системе. Так как скорость рассасывания напряжений— величина обратная времени релаксации, то за меру интенсивности деформирования следует принять безразмерный параметр, равный произведению скорости деформации на время релаксации. Хотя полимеры характеризуются совокупностью времен релаксации, но между ними существует однозначная связь. Это позволяет по крайней мере в первом приближении за характерное время релаксации принимать ее начальное значение, равное Ло/ э начальный модуль высокоэластичности (см. ниже). [c.225]

    Гелеобразование для раствора желатины изучено полнее, чем гелеобразование в случаях какой-либо другой системы (обзор по этому вопросу см. 1б1). Вязкость и жесткость раствора могут быть измерены методом затухающих колебаний. Этим методом было найдено, что при медленном охлаждении 1 % -иого раствора желатины вязкость возрастает постепенно, жесткость же увеличивается внезапно по достижении определенной температуры. Как и начало геле-образоваиия при охлаждении, так и плавление геля при нагревании происходит внезапно. В действительности при нагревании равновесие устанавливается скорее, чем при охлаждении, так как большие молекулы принимают положения, необходимые для образования поперечных связей очень медленно, в то время как разрыв связей может происходить без какого-либо существенного изменения положения молекул. Гелеобразование может происходить при добавлении осадителя к раствору желатины. Эти изменения обратимы в том смысле, что растворение и гелеобразование могут происходить по мере повышения или понижения температуры или при изменении растворителя следует отметить, что обычно при этом наблюдается явление гистерезиса. Жесткость образовавшегося геля увеличивается во времени благодаря медленному образованию дополнительных поперечных связей, которое имеет место и без дальнейшего изменения температуры. Жесткость увеличивается с увеличением молекулярного веса и уменьшается с повышением температуры кроме того, она увеличивается пропорционально квадрату концентрации. Графически выраженная зависимость логарифма концентрации геля от обратной величины абсолютной температуры плавления представляет собой прямую линию в значительрюм интервале концентраций. Из этого соотношения можно вычислить молекулярные теплоты гелеобразования , равные 50—70 ккал моль. Точное значение этой величины еще не установлено, но существование теплот гелеобразования, несколько меньше указанных, было подтверждено калориметрическим методом. Оводнение геля желатины при соприкосновении с водой и его обезвоживание зависят от предыстории данного образца, в частности от той концентрации, при которой произошло образование геля, Очевидно, система образующихся поперечных связей определяется концентрацией желатины во время гелеобразования она изменяется очень медленгю при оводнении или обезвоживании при низких температурах в присутствии воды. С другой стороны, характеристика набухания, образовавшегося при дайной концентрации геля, может изменяться при набухании его в воде до различной концентрации и последующей усадке при осторожном нагревании примерно до 20°. Все эти свойства подтверждают наличие трехмерной сетчатой структуры, образованной из полимерных молекул за счет поперечных связей, обратимо распадающихся при нагревании или разбавлении, ио образующихся относительно медленно. [c.325]


Смотреть страницы где упоминается термин Определение характеристик систем С обратными связями: [c.87]    [c.411]    [c.191]    [c.202]    [c.445]   
Смотреть главы в:

Типовые процессы химической технологии как объекты управления -> Определение характеристик систем С обратными связями




ПОИСК





Смотрите так же термины и статьи:

Обратная связь

Связи связь, определение

Связи характеристика

Связующее определение

Система с обратной связью

связям системам



© 2024 chem21.info Реклама на сайте