Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы взаимодействия в системах заряженных частиц

    Между материальными частицами действуют два типа сил взаимодействия - силы притяжения и силы отталкивания. Когда частицы удалены друг от друга на большое (по сравнению с их размерами) расстояние, тогда и энергия притяжения, и энергия отталкивания равны нулю. При уменьшении расстояния между частицами сначала возникают силы притяжения - это могут быть силы взаимодействия разноименных зарядов ионов, дипольных моментов молекул, мгновенных диполей, возникающих при движении электронов в атомах, и т. д. Энергия системы при этом понижается, и частицы самопроизвольно сближаются. Однако на очень маленьких расстояниях, сравнимых с размерами электронных оболочек атомов и молекул, возникают мощные силы отталкивания, обусловленные взаимодействием одинаково заряженных электронных облаков, и дальнейшее сближение частиц приводит к резкому повышению энергии. В результате, при определенном расстоянии между частицами (Го), общая энергия взаимодействия проходит через минимум, который определяет равновесное расстояние между частицами. Схематически изменение энергии взаимодействия двух частиц приведено на рис. 6.1. [c.81]


    Как неравновесные системы коллоидные растворы не обладают свойством обратимости. Так, если водный коллоидный раствор выпарить, а затем к нему добавить воду, то коллоидный раствор вновь не образуется. В отличие от водных истинных растворов золи имеют ограниченный срок существования и даже при самом оптимальном хранении с течением времени подвергаются старению и в конце концов коагулируют или желатинируются. Их устойчивость является следствием взаимодействия в основном трех факторов сил поверхностной энергии, заряда частиц и степени их лиофильности. [c.38]

    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]


    Проведенное рассмотрение показывает, что в более сложно организованной системе характер взаимодействия может существенно отличаться от простого кулоновского взаимодействия — в выражение для силы взаимодействия не входит заряд частиц, вместо него электрические свойства участников взаимодействия характеризуются дипольным моментом. Изменяется показатель степени в выражении для зависимости взаимодействия от расстояния. Однако природа взаимодействий остается прежней— это кулоновские взаимодействия между электрическими зарядами. [c.16]

    Известно, что поведение частиц с размерами молекул, не превыщаю-щими 10—50 ангстрем (А), можно описать молекулярно-кинетической теорией. (1 А=10 см — примерно диаметру атома водорода). Необходимо 10—15 молекул, чтобы возникло различие в скоростях, достаточно близкое к нормальному распределению. Практически принято 20—30 молекул считать фазой твердой (или жидкой). Между молекулами металла и фазой электролита действуют силы притяжения или отталкивания. Эти силы действуют не только на один слой молекул. Влияние этих сил распространяется и в глубь фазы, как бы по эстафете, т. е. внешний слой молекул притягивается силами взаимодействия ко второму слою, второй — к третьему и т. д. В конце концов где-то на глубине четвертого—седьмого молекулярных слоев действие сил становится пренебрежимо малым. Представив так качественную картину взаимодействия электрода с электролитом, заметим, что твердая электропроводная частица, попав в пространство между пластинами анод—катод, приобретает электрический заряд и устремляется к электроду противоположного знака. При ударе о пластину заряд меняется на противоположный, и частица летит к другому электроду. Очевидно, можно подобрать параметры электрического поля в системе анод—катод таким образом, чтобы все частицы или по крайней мере большинство из них находились в режиме устойчивых вынужденных колебаний в пространстве между электродами. [c.101]

    Займемся теперь описанием основных физических свойств простых ионов (одноатомных ионов, имеющих такое же электронное строение, как ближайшие по периодической системе благородные газы, например Li, Na, F или С1 ). Простой ион представляет собой сферическую частицу, обладающую положительным или отрицательным зарядом. Сила взаимодействия иона с окружающими его частицами определяется интенсивностью создаваемого им электрического поля. Эта характеристика ионов называется ионным потенциалом (см. гл. 6), который условно определяется как отношение заряда иона к ионному радиусу. Например, ионный потенциал иона магния Mg равен 2/0,66 = 3,03 (табл. 8.1). Чем выше ионный потенциал, тем сильнее электрическое поле, создаваемое ионом, и, следовательно, тем больше его взаимодействие с соседями. Скажем, Li сильнее взаимодействует с окружающими его анионами, чем s, поскольку радиус s приблизительно в 2,5 раза больше радиуса Li" . [c.130]

    Коагуляция бывает быстрой и медленной. Быстрая коагуляция — это коагуляция при учете только молекулярных сил притяжения. Если кроме сил притяжения учитываются силы электростатического отталкивания, то такая коагуляция называется медленной. Известно, что необходимая для быстрой коагуляции концентрация электролита Со сильно зависит от заряда противоионов, т. е. ионов, несущих заряд, противоположный заряду частиц. С другой стороны, устойчивость системы практически не зависит от заряда ионов и от концентрации частиц. Это соответствует правилу Шульца — Харди, согласно которому основное влияние на устойчивость системы оказывает валентность противоионов. Значения потенциалов молекулярного и электростатического взаимодействий частиц в точке, разделяющей устойчивое и неустойчивое состояния системы, находятся из следующей системы уравнений  [c.270]

    Таким образом, процесс перераспределения зарядов между частицами должен начинаться еще до их соприкосновения, что вызвано значительным ростом напряженности электрического поля в зазоре между частицами (см. раздел 12.2). Однако из-за неполного выравнивания потенциалов частиц и наличия молекулярных сил взаимодействия он может протекать незаметно. В грубодисперсных системах, в которых размер частиц Н - I —200 мкм, процесс перераспределения зарядов может быть основным тормозом на пути процесса укрупнения дисперсной фазы. Так, при обработке водонефтяных эмульсий в электрическом поле невысокой напряженности ( о<2кВ/см) скорость укрупнения капель воды 314 [c.314]

    Первое слагаемое справа равно нулю, так как система поляризационных зарядов в целом электронейтральна. Третье слагаемое также не дает вклада в общую силу, так как суммарная сила взаимодействия в замкнутой системе зарядов равна нулю (Еу = —Е ). Таким образом, сила, действующая на частицу, равна [c.120]


    Флокуляция особенно характерна для обратных эмульсий, в которых силы дальнего электростатического отталкивания обычно иеве-лики из-за малых значений заряда капель. - Однако и для заряженных капель в обратной эмульсии электростатическое отталкивание при достаточной их концентрации может не обеспечивать устойчивости к флокуляции это связано с тем, что 1из-за небольшого содержания электролитов в системе и низкого значения диэлектрической проницаемости среды толщина ионной атмосферы может быть очень велика (микроны и десятки микрон), что соизмеримо с расстоянием между каплями. Напомним, что положение энергетического барьера взаимодействия частиц, определяемого равновесием сил молекулярного притяжения и электростатического отталкивания (см. 4 гл. IX), отвечает толщине зазора, близкой к удвоенной толщине ионной атмосферы поэтому капли в достаточно концентрированных обратных эмульсиях как бы уже с самого начала расположены на расстояниях, соответствующих преодолению энергетического барьера. Устойчивость обратных эмульсий к флокуляции возможна при наличии структурно-механического барьера, обеспечивающего достаточно малую величину энергии взаимодействия капель при этом электростатическое отталкивание может содействовать уменьшению сил притяжения частиц. Проблема стабилизации обратных эмульсий против флокуляции капель приобрела в последнее время большое значение в связи с попытками использования подобных систем в виде водно-топливных эмульсий, содержащих до 30% воды. Введение эмульгированной воды в бензин и другие топлива, помимо более эффективного использования горючего, обеспечивают повышение его октанового числа и улучшение состава выхлопных газов при работе двигателя внутреннего сгорания. [c.290]

    При образовании незаряженных продуктов диссоциации каждую частицу можно рассматривать как самостоятельное образование, которое распределяется в объеме раствора более или менее независимо от других частиц и дает свой вклад в конфигурационную энтропию системы. В случае ионов электростатические силы взаимодействия вызывают значительное отклонение от идеальности, при этом ионы одного заряда отталкиваются, а ионы с противоположным зарядом притягиваются друг к другу. [c.115]

    Физической причиной такого превращения является изменение равновесного ван-дер-ваальсового и кулоновского потенциалов золь-системы в результате появления частиц новой фазы, не несущих электрического заряда. В подобной системе появляются дополнительные силы ван-дер-ваальсового отталкивания, что может рассматриваться как изменение константы диссоциации воды. В результате изменений в силах взаимодействия ассоциатов в присутствии золь-частиц их избыточное количество распадается или происходит трансформация 2(1-структур. Данное представление подтверждается полученными ранее результатами по исследованию распределения ассоциатов в объеме жидкости, показывающими, что вблизи поверхностей раздела фаз плотность упаковки ассоциатов значительно ниже [58]. Результаты исследования структуры магнитного поля тонких пленок водных растворов веществ также свидетельствуют о низкой плотности ассоциатов в малых объемах (расстояние между магнитными доменами достигает 0,5 см [57]). [c.172]

    Увеличение заряда дисперсной фазы, по-видимому, способствует упорядочению сольватной оболочки главным образом за счет привлечения большого количества ионов обратного знака, связанных с полярными молекулами, а также вследствие возрастания электростатических сил их взаимодействия с частицей. Увеличение заряда дисперсной фазы способствует повышению устойчивости коллоидной системы, имевшей в данном случае в качестве дисперсионной среды вазелиновое масло. [c.28]

    В реальных условиях устойчивость коллоидных систем играет громадную роль. Она зависит от сроков и условий их транс-лортирования, хранения, переработки. Изменения структуры коллоидных систем, приводящие к их разрушению, в различных условиях различны и зависят от соотношения и природы сил, действующих между диспергированными частицами. Это могут быть силы сцепления и силы отталкивания. Силы сцепления обычно проявляются при наличии межмолекулярного взаимодействия. Они сильно возрастают при сближении частиц, вызывая их слияние, коагуляцию. Поэгому устойчивость коллоидных систем резко снижается при увеличении концентрации. Отталкивание частиц друг от друга происходи г по нескольким причинам. Большое значение имеет электростатическое отталкивание частиц, имеющих одинаковый электрический заряд. Сближению частиц препятствует также образование на поверхности раздела сольватных оболочек, состоящих из молекул дисперсионной среды, поверхностно-активных веществ, играющих роль эмульгаторов, стабилизаторов, часто специально вводимых в коллоидные системы, и т. п.- Подбором рецептуры, способов приготовления, хранения и переработки коллоидных полимерных систем добиваются значительного повышения их устойчивости. [c.415]

    Решение системы уравнений (12.105) дает для <7, и <72 те же самые значения (12.104), что и в случае контакта частиц. Кроме того, поскольку Д 1, то из (12.82) и (12.83) следует, что при У) = У2 с точностью до членов порядка Д сила электростатического взаимодействия частиц после перераспределения зарядов оказывается такой же, как и для соприкасающихся частиц. [c.315]

    Известно, что.отклонения от идеального состояния какой-либо системы обусловлены взаимодействием частиц, когда они находятся достаточно близко, т. е. при достаточно высокой концентрации. В растворах электролитов, в которых межионные взаимодействия носят главным образом электростатический характер, существенное влияние на отклонение системы от идеального состояния имеет не только концентрация ионов, но и их заряд. Для учета влияния этих двух факторов используют параметр, называемый ионной силой раствора [c.20]

    В физической теории устойчивости лиофобных коллоидов система взаимодействующих двойных слоев в первом приближении рассматривается как равновесная. При сближении одинаково заряженных частиц в растворе электролита происходит их отталкивание. Последнее не является кулоновским, так как заряд поверхности частиц полностью компенсирован зарядом противоионов. Силы отталкивания появляются при перекрытии диффузных ионных атмосфер (периферической части ДЭС) при этом концентрация ионов в зоне перекрытия возрастает по сравнению с невзаимодействующими слоями. Избыточная концентрация ионов в этом слое создает локальное осмотическое давление, стремящееся раздвинуть поверхности, т. е. приводит к возникновению так называемой электростатической компоненты расклинивающего давления. Расчет этой силы отталкивания на основе теории двойного слоя Гуи — Чепмена и теории сильных электролитов Дебая — Хюккеля был впервые выполнен Дерягиным [9], а затем другими исследователями. [c.14]

    Различают кинетическую энергию, или энергию движения, и потенциальную энергию, или энергию положения и взаимодействия частиц системы. Данная система или тело может обладать потенциальной энергией вследствие того,, что находится в поле действия сил, вызывающих притяжение или отталкивание (например, силы тяжгсти, действия упругой деформации,, силы взаимодействия электрических зарядов). Разность потенциальных энергий двух состояний системы или двух ее конфигураций равна работе гравитационных, упругих, электростатических или других сил, взятой со знаком минус. Следовательно, физический смысл работы имеет только разность потенциальных энергий двух состояний или двух уровней системы. [c.26]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    При образовании молекулы из двух атомов решающую роль играют электростатические взаимодействия между заряженными частицами, входящими в состав взаимодействующих атомов межэлектрон-ное отталкивание, межъядерное отталкивание и электро-но-ядерное притяжение. Причем понижение энергии системы осуществляется за счет того, что электроны, образующие химическую связь, в молекуле притягиваются одновременно двумя ядрами. Между ядрами соединяющихся атомов появляется повышенная плотность отрицательного заряда, которая уменьшает силу межъядерного отталкивания. [c.20]

    Электростатические представления. По простой электростатической модели (Коссель и Магнус, 1916—1922) взаимодействие между комплексообразователем и ионными или полярными лигандами подчиняется закону Кулона. При этом предполагается, что образующие комплекс частицы представляют собой ледеформируемые шары с определенным зарядом и радиусом. Устойчивый комплекс получается, когда силы притяжения к ядру комплекса уравновешивают силы отталкивания между лигандами. При дальнейшем увеличении числа лигандов силы отталкивания между ними возрастают и комплекс становится непрочным. Эта модель позволила для ряда комплексов металлов оценить устойчивость, предсказать координационные числа и пространственное расположение лигандов. На основе кулоновского взаимодействия заряженных частиц с учетом принципа наименьшей энергии системы были рассчитаны оптимальные значения координационных чисел. Так, для комплексообразователей в степени окисления -f 1 координационная валентность (КВ) равна 1 или 2 для степени окисле- [c.160]

    Аддитивность энергии взаимодействия выполняется абсолютно строго при электростатическом взаимодействии точечных зарядов. Что касается межмолекулярных взаимодействий, равенство (Х.35) является приближением. Показано, что для дисперсионных сил предположение об аддитивности выполняется с хорошей степенью точности. Этого нельзя сказать об индукционной составляющей. Действительно, взаимодействие между какими-либо двумя частицами в данном случае зависит от их электрических моментов, а последние содержат индуцированную часть, определяемую суммарным полем всех частиц системы. Потенциал отталкивания также не является аддитивным. Так, квантовомеханические расчеты показали, что отталкива-тельная энергия трех атомов гелия, расположенных в вершинах равностороннего треугольника, почти на 20% меньше, чем сумма энергий отталкивания изолированных пар. Имеются и другие основания, как теоретические, так и экспериментальные, считать, что различие между энергией взаимодействия трех частиц и суммой энергий взаимодействия соответствующих изолированных пар не является пренебрежимо малым (эту разницу определяют как энергию трехчастичного взаимодействия). Остается, однако, открытым вопрос о других многочастичных членах в выражении для энергии системы. Успех расчетов (в том числе расчетов для жидкостей и кристаллов), проведенных исходя из аддитивности межмолекулярных сил, позволяет предположить, что результирующая неаддитивность во многих системах совсем мала и что, во всяком случае, допустимо представить энергию системы (пусть даже плотной) в виде суммы некоторых эффективных парных потенциалов, — возможно, несколько отличных от потенциалов взаимодействия изолированных пар и зависящих, вообще говоря, от плотности и температуры системы и г) = и [г, п, Т). Отметим, что почти все выполненные до настоящего времени статистические расчеты для систем, силы притяжения в которых являются ван-дер-ваальсовыми, основаны на допущении об аддитивном характере сил межмолекулярного взаимодействия. [c.284]

    Астабилизация полистирольного латекса проходит с постепенным образованием агрегатов глобул при неполном их слиянии в результате уменьшения степени гидратации адсорбированного ПАВ и одновременного изменения энтропии системы. Достижение предельно малой гидратации адсорбционного слоя соответствует такой степени агломерации глобул, при которой дальнейшая дегидратация общего адсорбционного слоя приведет к гидрофобизации поверхности, к резкому возрастанию сил взаимодействия между частицами через гидратные прослойки и к астабилизации системы. Малая плотность заряда на поверхности и недостаточное заполнение ее ПАВ способствуют образованию таких структур и в системах с ионным ПАВ [11, 12], однако гидратный слой, образованный ионами двойного диффузного слоя, препятствует необратимому слиянию глобул и переходу гелеобразования в коагуляцию. Чем выше насыщенность оболочек, тем более однофазна и упорядоченна надмолекуляр- [c.456]

    Воздействие электромагнитных полей на раствор, как показывают экспериментальные исследования, способствует перемешиванию компонент раствора. Поэтому представляет интерес оценить величину силы, воздействующей на частицы дисперсной фазы суспензии в восходящем потоке жидкости. Используя уравнения (4.2), оценим величины сил, действующих на частицу в восходящем потоке жидкости при взаимодействии заряда частицы с внешним электрическим полем (рис. 4.3). Тогда система уравнений (4.2) с учетом взаимодействия заряда частицы с внещ- [c.75]

    Согласно электростатической теории, коллоидная система представляет собой следующее. Вокруг частицы имеется двойной электрический слой, одна часть которого прочно связана с частицей. За этим слоем, благодаря электростатическим силам заряженной частицы, действующим отталкивающе на однозначно заряженные ионы и притягивающе на противоположно заряженные ионы, получается слой ионов, в котором будут преобладать ионы противоположного с частицей знака. Такому распределению ионов с противоположным зарядом препятствует температурное движение ионов, энергия которого приблизительно одного порядка с энергией кулоновских сил (сил электрического взаимодействия). Под действием двух этих сил образуется своего рода ионная атмосфера вокруг частицы, в которой будут преобладать ионы с зарядами, противоположными заряду частицы. Например, в случае отрицательно заряженной частицы AsaSs вблизи самой частицы будет находиться ярочный слой Н+-ионов, не уравновешивающий полностью ее заряда. За этим слоем диффузный слой Н+-ионов, [c.263]

    Частным случаем коагуляции электролитами является взаимная коагуляция двух гидро( юбных коллоидов с различными знаками зарядов. Здесь структура двойных слоев коллоидных частиц имеет обратный знак и перекрытие ионных атмосфер способствует не отталкиванию, а притяжению коллоидных частиц. Таким образом, расстояние, на котором преобладают силы притяжения (радиус взаимодействия / ), при взаимной коагуляции коллоидов значительно больше фактическ их размеров частиц г например, при взаимной коагуляции положительно заряженного золя гидроокиси меди и отрицательных частичек глины величина R составляла до 65 г (Е. Вигнер). Естественно, что наиболее полная коагуляция происходит при взаимной нейтрализации зарядов частиц. При избытке одного из коллоидов наблюдается перераспределение ионов и образование измененных двойных слоев вокруг агрегированных частиц, вследствие чего система в целом может остаться устойчивой, со знаком заряда избыточного коллоида. [c.125]

    Численная оценка показывает, что для сферических частиц полистирола (г = = 10 мкм) и плотности заряда р = 3,34 10 Кл/м вклад ван-дер-ваальсовых сил в адгезионное взаимодействие системы составляет около 0,01%. Но уже в случае ионных кристаллов вклады этих двух составляющих соизмеримы [372]. [c.84]

    Рассмотрим вначале случай, когда сила Р является центральносимметричной. Такими силами являются силы молекулярного взаимодействия частиц, а также силы, обусловленные свободными электрическими зарядами на частицах. Решая уравнение (5.35) в сферической системе координат с началом в центре частицы ЯхИ граничными условиями п=0 при и = 0 при г оо, получим следующее выражение для потока частиц на частицу [c.90]

    Под действием сил электростатического взаимодействия из раствора к ядрам притягиваются в среднем по (m — х) присутствующих в системе противоионов NO3 (ионы, знак влектрических зарядов которых противоположен знаку зарядов ядер). В итоге образуются положительно заряженные коллоидные частицы  [c.210]

    Таким образом, поглощение или испускание ИК-излучения колеблющейся молекулой, имеющей дипольный момент, можно легко пояснить в простой описательной форме, как это сделано в предыдущем параграфе. Гораздо сложнее описать подобным способом электронные переходы. В классическом смысле электронное возбуждение не соответствует увеличению энергии в осциллирующей системе во всяком случае, и высоко-, и низколежащее электронное состояние может не иметь постоянного дипольного момента (т. е. во всех состояниях электронное облако симметрично расположено вокруг ядер, так что нет разделения зарядов). Однако и в этой ситуации основные принципы взаимодействия с излучением еще применимы, и нам лишь нужно знать, происходит ли дипольное взаимодействие во время перехода между двумя состояниями. Существует единственный строгий метод решения этой проблемы уравнение Шрёдингера, упомянутое в начале раздела, может быть использовано для вычисления скорости перехода системы из одного стационарного состояния в другое под влиянием возмущающей силы. Если скорость возмущения системы, вызванного взаимодействием диполя с электрическим вектором излучения, не равна нулю, то существует дипольный момент перехода. Скорость перехода между состояниями, умноженная на число частиц в низшем состоянии, составляет, естественно, предельную скорость поглощения фотонов, так что в принципе решение уравнения Шрёдингера должно приводить к расчету интенсивности перехода. Однако точные решения этого урав- [c.31]

    При взаимодействии коллоидов с электролитами обычно на поверхности частиц адсорбируется преимущественно один из ионов, сообщающий поверхности свой знак заряда. Для простоты положим, что адсорбируются только ионы одного знака (например, частицы йодистого серебра в 0,01 н. AgNOs адсорбируют только Ag + -ионы) и что противоположные или компенсирующие ионы полностью остаются в растворе. Под действием сил электростатического притяжения компенсирующие ионы стремятся расположиться возможно ближе к ионам, адсорбированным на поверхности. В предельном случае образуется два слоя ионов, из которых один расположен на поверхности, а другой — в растворе, на молекулярном расстоянии от первого слоя (рис. 42 а). Такая система ионов, в целом нейтральная, называется двойным электрическим слоем, по Гельмгольцу. Под действием теплового движения упорядоченное расположение компенсирующих ионов в растворе нарушается, вследствие чего в другом предельном случае двойной электрический слой приобретает структуру диффузного двойного слоя, по Гуи (рис. 42 в) толщина этого слоя может составлять, например в 0,001 н. КО — 10 ма, а в 0,1 н. КС1 — 1 м[1. Фактически следует представлять, что часть ионов находится на молекулярном расстоянии от [c.102]

    Остановимся вкратце лишь на тех работах, которые ближе к тематике книги. Ряд вопросов теории устойчивости лиофобных коллоидов был рассмотрен Барбоем влияние на пороги коагуляции величины потенциала частиц, заряда побочных ионов и состава электролита [27]. Все эти расчеты основаны на анализе баланса сил молекулярного притяжения и ионно-электростатического отталкивания в системах, состоящих из плоских частиц с фиксированным потенциалом диффузного двойного слоя. Броуновское движение частиц при этом полностью игнорировалось. Напротив, кинетические аспекты устойчивости подробно рассматривались Глазманом и Клигман [28]. Глазман и Барбой с сотр. [29]йоказали, что такие явления, как аддитивность, антагонизм, синергизм, в действии смесей ионов могут быть в принципе объяснены с помощью модели взаимодействующих плоских частиц при определенных предположениях относительно ад- [c.269]

    Проводились исследования процесса осаждения гпинис -тых и песчаных частиц в водных средах, рассматривалось их поведение в магнитном поле, В опытах по осаждению гпинистых суспензий в магнитном поле даже визуально было замечено увеличение коагуляции суспензий в однородном поле (Куценко А.Н. О механизме силового действия магнитных полей на водные системы, — В кн. Вопросы теории и практики магнитной обработки воды и водных систем. - Новочеркасск, 1975). Из полученных данных следует, что действие магнитного поля на водно-глинистые суспензии многообразно ориентационное, диполь-дипольное взаимодействие, силовое и т.д. Глинистые частицы, обычно находящиеся в природных водах, несут на себе поверхностный заряд. При малых размерах твердых частиц силы диффузии преобладают над сипами тяжести, и частицы остаются во взвешенном состоянии, не осаж-даясь на дно сосуда. Для того, чтобы произошло их укрупнение за счет слипания мелких частиц друг с другом, частицы должны настолько сблизиться, чтобы оказались действенкь (к илы взаимного притяжения частиц. Благодаря укрупнению частиц диффузионные силы уменьшаются и становится возможным осаждение взвеси. Под действием магнитного поля частица совершает движение по спирали вокруг магнита. В результате такого вращения увеличивается вероятность столкновения частиц, объединения мелких в более крупные, повышается скорость их осаждения. [c.34]

    В технологической практике часто приходится иметь дело с суспензиями, дисперсная фаза которых состоит из частиц различной химической природы, например из смеси частиц песка и глины. Подобные дисперсные системы далее будут характеризоваться как системы с многокомпонентной дисперсной фазой. С точки зрения устойчивости наиболее существенным их отличием от однокомпонентных суспензий является то, что частицы разной химической природы в общей дисперсионной среде обычно имеют различный по величине или даже по знаку электрический потенциал поверхности. Достаточно очевидно, что наличие у частиц противоположного по знаку заряда ведет к тому, что электрические силы их взаимодействия уже не будут препятствовать коагуляции суспензии, наоборот — они будут способствовать ей. Неизбежность коагуляции не означает, что вмешательство в ход этого процесса бесполезно и регулирование его в желательном направлении невозможно. Детально вопросы эволюции коагулирующих взвесей и средства ее регулирования рассматриваются в подразделах 3.13-3.15. Здесь же обсуждаются важные особенности многокомпонентных систем, в том числе способные повлиять на ход процесса коагуляции и конечное состояние взвеси. Коагуляция, при которой происходит слипание частиц различной химической природы, получила название гетерокоагуляция , а взаимодействие частиц разной природы далее будет обозначаться как гетеровзаимодействие . [c.634]

    Последняя из групп методов разделения объединяет. методы, основанные на различиях в свойствах ионов, ато.мов или молекул, проявляемых в пределах одной гомогенной системы при воздействии электрического, магнитного, гравитационного, теплового полей или центробежных сил. При этом не исключается возможность фазовых превращений при переводе исходной смеси веществ в то агрегатное состояние, в котором происходит разделение, или при выделении фракций ее отдельных компонентов. Эффект разделения достигается за счет различного пространственного перемещения веществ в пределах фазы, в которой происходит их разделение. Различия в скорости пространственного перемещения ионов, атомов или молекул будут проявляться в зависимости от их массы, размеров, заряда, энергии взаимодействия частиц с ионами и молекулами, образующими среду, в которой происходит разделение. Относительная роль тех или иных факторов в достижении конечного эффекта разделения, в свою очередь, зависит от природы действующих на них сил. Наиболее очевидный случай — электрофоретическое или, как его иногда называют, электромиграционнос разделение ионов в растворах за счет различных скоростей их движения в электрическом поле. Здесь важнейшими факторами оказываются размер и заряд иона. Различия в массе и заряде в наибольщей степени проявляются при воздействии па ионизованные частицы ускоряющего электрического поля и отклоняющего магнитного. Этот способ воздействия на систему лежит в основе масс-сепарационного метода. При разделении под воздействием центробежных сил — ультрацентрифугировании определяющим фактором оказывается масса молекул. [c.241]

    Влияние объемной доли дисперсной фазы на электропроводимость в обратных микроэмульсиях воды, изооктана и АОТ [64] приведено на рис. 5.37, а. При увеличении концентрации капель микроэмульсии начинается их взаимодействие (вызванное силами притяжения) с образованием набухших частиц кластеров. Рост скорости обмена носителей заряда (ионов) между каплями приводит к увеличению электропроводимости. Подобным же образом повышение температуры может влиять на изменение проводимости, как про адлюстрировано на рис. 5.37, Ь для случая обратных микроэмульсий воды, АОТ и декана. При достижении определенного предела класте-рообразования, в некоторых системах становится возможным воздействие на переход [c.190]

    Для расчетов по уравнению (13) (а тем более для определения внриаль-ных коэффициентов высших порядков) необходимо знать адсорбционный потенциал как функцию координат. Взаимодействие между молекулой и поверхностью твердого тела является по своей природе электромагнитным и поэтому должно описываться квантовой механикой. В том случае когда равновесное распределение заряда системы таково, что не происходит переходов электронов мелоду участвующими частицами, и взаимодействующие компоненты сохраняют, таким образом, свою индивидуальность, можно говорить о физических силах. Физическую адсорбцию обычно связывают именно с такого рода взаимодействием. [c.28]

    Хотя мы полагаем, что взаимодействие двойных полимерных слоев (рис. 1) имеет определяющее значение при стабилизации дисперсий блок- и привитыми сополимерами, нельзя исключать вероятное влияние на стабилизацию ионных зарядов. Дело в том, что адсорбированные на поверхности частиц двуокиси титана бутадиен-стирольные блоксополимеры содержат карбоксильные группы. Ионные силы могут способствовать как стабилизации, так и флокуляции. В исследованных системах стабильность дисперсий уменьшается с повышением степени карбоксилировапия. При слишком высоких степенях карбоксилировапия бутадиен-стирольные блоксополимеры дей-, ствуют скорее как флокулирующие, чем как диспергирующие агенты. Простое объяснение этого эффекта можно дать, если предположить, что полимерные цепи адсорбируются на поверхности твердой частицы в виде петель, выступающих в дисперсионную среду Г17]. Если в полибутадиеновом блоке сополимера присутствует слишком много карбоксильных групп, не все чз них смогут войти в соприкосновение с поверхностью двуокиси титана. Некоторые расположатся па внешней части складок цепей, которые выступают в дисперсионную среду. Далеко располон енные группы могут адсорбироваться на поверхности другой частицы двуокиси титана, обусловливая, таким образом, флокуляцию за счет сшивания. [c.314]

    В расплавах солей, однако, содержатся два типа частиц - анионы и катионы, и поэтому возникают трудности, связанные с усреднением а, а также с учетом заряда ионов. Эти вопросы подняты Рейссом, Майером и Кацем [59]. В расплавах солей дальнодействую-щие силы кулоновского взаимодействия между частицами приводят к образованию (особенно при низких температурах) некоторых наиболее предпочтительных конфигураций, в которых возникают связи между ионами противоположного заряда. Напротив, образование связи между заряженными частицами одного знака весьма маловероятно. Можно предположить, что ионы имеют жесткое ядро и на малых расстояниях взаимодействуют друг с другом как твердые сферы. В этом случае характерным параметром длины в системе является сумма ионных радиусов г + г = а. [c.453]

    Вследствие наличия на поверхности частиц заряженных алюминиевых аквагидроксокомплексов возникают электростатические силы отталкивания, которые оказывают стабилизирующее действие. Стабилизации дисперсной системы также способствуют гидратные оболочки вокруг частиц. При удалении частиц на большое по сравнению с их размерами расстояние взаимодействия между ни.ми не происходит, т. е. они не притягиваются и не отталкиваются. В результате броуновского движения положительно заряженных частиц они сближаются и возникают электростатические силы отталкивания, которые суммируются с силами молекулярного притяжения. С уменьшением расстояния между частицами, как отмечалось выше, результирующее действие этих противоположных сил приводит к превалированию отталкивания. При дальнейшем сближении силы отталкивания уменьшаются и начинают превалировать силы притяжения. Для того чтобы произошла коагуляция, частицы должны преодолеть силы отталкивания (так называемый энергетический барьер ), что может произойти в случае достаточно большой энергии движения частиц или снижения высоты барьера. Чем выше этот барьер и меньше энергия движения частиц, тем меньше вероятность их слипания и медленнее протекает процесс коагуляции или вовсе не идет. С уменьшением электрического заряда или в случае его отсутствия, а также с повышением энергии движения частиц силы оттал1гивания уменьшаются и процесс коагуляции интенсифицируется. [c.35]


Смотреть страницы где упоминается термин Силы взаимодействия в системах заряженных частиц: [c.689]    [c.106]    [c.254]    [c.93]    [c.291]    [c.28]    [c.130]    [c.137]   
Смотреть главы в:

Математическая теория процессов переноса в газах -> Силы взаимодействия в системах заряженных частиц




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия в системе

Взаимодействующие системы

Заряд частицы ВМС

Силы взаимодействия частиц

Частицы взаимодействие

Частицы заряженные



© 2025 chem21.info Реклама на сайте