Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение активного силикагеля

    Получение активного силикагеля [c.99]

    Высокое содержание аморфного кремнезема в харьковской породе позволило использовать ее для получения активного силикагеля [20]. Процесс приготовления весьма несложен, хотя в представленном авторами варианте не является вполне совершенным. [c.206]

    Поскольку силикагель является компонентом многих каталитических систем, возможность регулирования его активности в изомеризации имеет большое практическое значение. В связи с этим изучили влияние щелочи на изомеризующую активность силикагеля [45, 46]. Было приготовлено 13 образцов, различающихся количеством поглощенной щелочи. На этих образцах изучали превращения олефинов, полученных при разложении н-гексадекана. По характеристическим полосам неплоских деформационных колебаний атомов водорода у двойной связи было установлено содержание непредельных углеводородов следующих 4 типов R H= H2 (909—916 и 990—1004 см- ), RR = H2 (887—892 см ), транс-. R H = HR (964—979 см-i) и RR = HR" (808—833 см ). [c.159]


    Полученные значения Ут, Сб и т подставляют в формулу (91) и вычисляют адсорбционную активность силикагеля. [c.154]

    Количество неподвижной фазы, необходимое для покрытия твердого носителя, зависит от многих факторов. Основное требование при этом заключается в том, что количество неподвижной фазы никогда не должно быть настолько велико, чтобы полученный сорбент становился клейким и частицы спекались вместе, так как при этом эффективность разделения значительно снижается. Максимальная способность к поглощению жидкости в значительной степени зависит от величины и структуры поверхности твердого носителя (см. табл. 2). Активный силикагель, например, может поглощать до 60% неподвижной фазы стеклянные микрошарики, напротив, могут удерживать жидкую фазу в количестве лишь около 3% собственного веса для шамотовой муки и кизельгура содержание неподвижной фазы не должно превышать 20-30%. [c.96]

    Как и при определении относительного времени удерживания растворителей для получения на хроматограмме необходимых для расчетов пиков перед вводом в колонку подвижной фазы добавляется раствор высококипящего нефтепродукта в подвижной фазе. Величина относительного времени удерживания бензола есть не что иное, как величина активности силикагеля и [c.10]

    Активность силикагеля после просушки значительно выше 0,250 — величины, требуемой для работы, поэтому его поверхность необходимо модифицировать водой до получения активности 0,250+0,010. [c.10]

    Локализованная неподеленная пара на атоме азота в нефтяных азотсодержащих соединениях дала возможность их использования в реакционно-активных каталитических композициях. На основе комплексов кобальта, железа и нефтяных азотсодержащих соединений получены катализаторы нейтрализации оксидов азота в промышленных и отходящих газах с целью защиты окружающей среды от загрязнения. Для получения активных каталитических форм комплексы получают на носителе — цеолитах, у-АЬОз и силикагелях, пропитывая последние хлороформенным раствором азотсодержащих концентратов. Затем, после отгонки растворителя носитель обрабатывают водным раствором хлорида кобальта и железа. При контакте с такими каталитическими системами газовой смеси, состоящей из 0,13 % N0-I-ЫОт и эквимо-лярного количества аммиака, очищенная смесь содержит только 0,032 % оксидов азота, что соответствует 76%-ой степени их нейтрализации. Большая часть оксидов в этом процессе превращается в азот и воду. Нейтральные и основные азотсодержащие соединения близки по эффективности. [c.144]


    Полученные значения величин и подставляют в формулу (19) и вычисляют значение адсорбционной активности силикагеля. [c.44]

    Исследование процесса карбонизации растворов силиката натрия [222] показало, что в зависимости от условий карбонизации и дальнейшей обработки осажденной кремневой кислоты последняя может иметь различную структуру и различные физико-химические свойства. Карбонизация в диапазоне низких температур и в отсутствие электролита приводит к образованию структурированного осадка — геля, после соответствующей обработки которого может быть получен активный и прочный силикагель. [c.97]

    На основании количества полученного чистого-н-гептана вычисляют количество бензола, задержанное 100 г адсорбента, т. е. адсорбционную активность силикагеля по отношению к ароматическим УВ. [c.100]

    С годами число патентов в области ароматизации не только не уменьшалось, но, наоборот, возрастало. При этом постепенно становилось все более и более ясным, что самым важным но-сителем в катализаторе циклизации является окись алюминия, без которой катализатор недостаточно устойчив. Особое значение имеет физическое состояние окиси алюминия, а следо вательно, методы ее полз чения. Главными окислами, вызывающими ароматизацию, как видно из патентов, являются окиси хрома, молибдена и ванадия, причем окись хрома сначала занимала первое место, а затем широкое применение получила окись молибдена, особенно при работах под небольшим давлением. Появляются патенты с применением промоторов, в качестве которых предлагаются щелочные, а иногда и благородные металлы. Иногда подробно описывается метод получения активных гелей.Часто в патентах встречаются специфические методы получения отдельных компонентов катализаторов так, в описании одного метода получения активного катализатора, состоящего из окиси хрома на силикагеле, последний получают из этилового эфира кремневой кислоты.  [c.72]

    Было проведено сравнение адсорбционной активности силикагеля, алюмогеля и пористого стекла. На рис. 1 приведены хроматограммы смеси, состоящей из 12% метана, 32% этана и 56% этилена, полученные в одинаковых условиях на колонке длиной 1,5 м, диаметром 5 мм, заполненной соответственно силикагелем марки КСК, активной окисью алюминия А-1 и пористым стеклом, протравленным в кислоте в течение 30 мин. и 3 час. [c.62]

    Предварительные опыты по использованию силикагеля в качестве адсорбента показали, что при температуре десорбции +50°, рекомендованной в указанных работах, наблюдается неполная десорбция этилена. Было установлено, что при температуре +130° этилен десорбируется полностью, но при этой температуре некоторые тяжелые компоненты, присутствующие в образцах газов, полученных из растений, разрушаются с образованием этилена. Это явление можно объяснить высокой каталитической активностью силикагеля. [c.87]

    Из существующих нескольких способов получения активного силикагеля в СССР пользуются способом профессора Окатова, а также Брунса и Шатуновской. [c.32]

    Еще в 1946 г. Наумовым [91 ], вероятно, впервые было строго доказано на примере реакции изомеризации окиси этилена, что механическая смесь двух компонентов (силикагеля и окиси алюминия) в условиях, исключающих их взаимодействие (температура 200° С), обладает значительно более высокой активностью, чем каждый из компонентов в отдельности. В 1958 г. метод механического смешивания платинированного угля с алюмосиликагелем был предложен для получения активных катализаторов гидродеалкили-рования [92]. В 1964 г. Никс и Вейз показали эффективность такого приема при проведении ароматизации парафинов на смеси алюмосиликатного и дегидрирующего платинового катализаторов [93]. В настоящее время полифункциональные катализаторы широко применяют в основном в процессах превращения углеводородов [94, 95]. Чтобы провести сложное превращение веществ, приходится иметь дело с многоступенчатым процессом, протекающим в виде серии последовательных и параллельных реакций. В этом случае часто недостаточно эффективно применять один катализатор, так как при этом ускоряется лишь одна ступень процесса. [c.47]

    Адсорбционная активность силикагелей сильно зависит от размера их пор чем меньше размер пор, тем больше адсорбционная активность. Но мелкопористые силикагели дороже и быстро разрушаются в присутствии капельной влаги. Для получения низких точек росы используют двухступенчатую адсорбцию в первой зоне адсорбции располагается высокопористый силикагель (диаметр пор 3-5 нм), а во второй зоне мелкопористый (диаметр 1,5-3 нм). Силикагели, так же как и А12О3, адсорбируют углеводороды, причем на стадии регенерации С,-С4 углеводороды десорбируются полностью, а углеводороды Сд и выше - не полностью. [c.64]

    Гипс — сорбент, обладающий небольшой сорбционной емкостью и малой активностью. Используется для хроматографирования полярных соединений, а также соединений, содержащих большое число различных функциональных группировок применяется как связующая добавка к силикагелю для получения закрепленных слоев (не более 5%), а также для снижения активности силикагеля (до 20%). Хроматографически активный гипс получают осаждением из 10—15%-ного водного раствора хлорида кальция эквивалентным количеством 10%-ного раствора серной кислоты при 70—80 °С. Полученный таким образом сульфат кальция отфильтровывают, промывают водой до нейтральной реакции и сушат 48 ч при 115—120 °С. [c.58]


Рис. 10.10. Изотерма поверхностного избытка (Г) в растворах поверхностно-активного вещества. Структура поверхностного слоя а — чистый растворитель б — ненасыщенный мономолекулярный слой ПАВ в — насыщенный мономолекулярный слой ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. Зелинский разработал способ получения активных углей, предложив их в качестве универсальных поглотителей отравляющих веществ, и совместно с Э. Л. Кумантом сконструировал угольный противогаз с резиновой маской. Один из первых способон активирования древесного угля состоял в обработке его перегретым паром для удаления смолистых веществ, образующихся при сухой перегонке древесины и заполняющих поры в обычном угле. Современные методы получения и т .следования активных углей в нашей стране разработаны М. М. Дз бининым. Удельная поверхность активных углей достигает 1000 на грамм. Активный уголь является гидрофобным адсорбентом, плохо поглощает пары воды и очень хорошо — углеводороды. Рис. 10.10. <a href="/info/8760">Изотерма поверхностного</a> избытка (Г) в <a href="/info/73320">растворах поверхностно-активного вещества</a>. <a href="/info/4510">Структура поверхностного слоя</a> а — <a href="/info/129270">чистый растворитель</a> б — ненасыщенный <a href="/info/4461">мономолекулярный слой</a> ПАВ в — <a href="/info/740682">насыщенный мономолекулярный</a> слой ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. Зелинский разработал <a href="/info/300352">способ получения активных</a> углей, предложив их в <a href="/info/1439224">качестве универсальных</a> поглотителей отравляющих веществ, и совместно с Э. Л. <a href="/info/677794">Кумантом</a> сконструировал угольный противогаз с резиновой маской. Один из первых способон <a href="/info/311838">активирования древесного</a> угля состоял в обработке его <a href="/info/13965">перегретым паром</a> для удаления <a href="/info/56063">смолистых веществ</a>, образующихся при <a href="/info/83829">сухой перегонке древесины</a> и заполняющих поры в обычном угле. <a href="/info/658568">Современные методы получения</a> и т .следования активных углей в <a href="/info/1692382">нашей стране</a> разработаны М. М. Дз бининым. <a href="/info/1443951">Удельная поверхность активных</a> углей достигает 1000 на грамм. <a href="/info/4303">Активный уголь</a> является <a href="/info/15361">гидрофобным адсорбентом</a>, плохо <a href="/info/1634398">поглощает пары</a> воды и очень хорошо — углеводороды.
    Активный силикагель представляет собой твердую зернистую стеклообразную массу, пл. 2,0—2,5 г/см . Силикагель, полученный из чистых про- дуктов, бесцветный и прозрачный. При продолжительном хранеиви переходит в кристаллическую форму и в значительной мере теряет адсорбционную способность. Силикагель является хорошим адсорбентом для летучих органических растворителей и водяных паров. Влажный воздух, пропущенный через трубку с силикагелем, содержит только 0,03 мг/л Н О силикагель более энергичный осушитель, чем например, NaOH или a l2. [c.173]

    Следует отметить, однако, что для оценки адсорбционных свойств силикагеля Хармадарьян и Копелевич пользовались величиной статической активности по бензолу, которая, как известно, не может полностью характеризовать пористую структуру, в дальнейшем, дополнпв сведения об адсорбционной активности полученных ими силикагелей изотермами адсорбции паров бензола, авторы [381 пришли к выводу, что поглотительная способность зависит от объема пор и величины их радиусов. [c.13]

    Основным методом оценки фракций алкилсалициловых кислот, Еспользуемых для получения алкилсалицилатных присадок MA K, -АСК и АСЕ к смазочным маслам, в настоящее время является определение кислотных чисел фракций этих кислот в виде их натриевых олей [558] или в свободном виде по ГОСТ 11362—6,5. Жидкостная адсорбционная хроматография на активном силикагеле позволяет определить во фракции алкилсалициловых кислот (после разложения их натриевых солей) содержание не вошедших в реакцию карбокси-лирования групп парафино-олефиновых углеводородов, вторичных алкилфенолов и алкилсалициловых кислот [559]. Установлено, что, изменив условия жидкостной адсорбционной хроматографии, гможно во фракциях алкилсалициловых кислот в виде натриевых солей определить группы алкилсалициловых кислот. Причем не вошедшие в реакцию карбоксилирования алкилфенолы выходят из слоя силикагеля двумя фракциями в виде алкилфенолятов натрия >в смеси с парафино-олефиновыми углеводородами и алкилфенолов, с алкилфениловыми эфирами. Практически полное протекание реакции замещения катионов натрия, содержащихся в исходной пробе алкилсалицилатов, на ион водорода происходит за счет наличия необходимого числа парных ОН-групп, связанных с атомом кремния на поверхности силикагеля. Активной в этом обмене является одна из парных ОН-групп, одиночные ОН-группы неактивны [560]. [c.330]

    Третьим вариантом смешанных катализаторов являются многофазные системы. Еще в 1946 г. А,- И. Наумовым [99], вероятно впервые, было строго доказано на примере реакции изомеризации окиси этилена, что механическая смесь двух компонентов (силикагеля и окиси алюминия) в условиях, исключающих их взаимодействие (температура 200°С), обладает значительно более высокой активностью, чем каждый из компонентов в отдельности. В 1958 г. метод механического смешивания платинированного угля с алюмосиликатом был предложен для получения активных катализаторов гидрогенолизного дезалки-лирования [100]. В 1964 г. Никс и Вейз показали эффективность такого приема при проведении ароматизации парафинов на смеси алюмосиликатного и дегидрирующего платинового катализаторов [101]. Можно предполагать, что повышенная активность механических смесей связана либо с тем, что реакция протекает на границе соприкосновения двух фаз, где наблюдается взаимное влияние поверхностей двух типов, либо с тем, что при наличии двух фаз в катализаторе на них протекают последовательные превращения. Если принять, что первое из последовательных превращений обратимо, а второе может идти только в присутствии второй фазы катализатора и что время диффузии промежуточных продуктов между частицами компонентов катализатора сравнимо с временем существования этих продуктов, то последнее объяснение становится более правдоподобным. Расчеты модельных реакций на электронно-цифровой вычислительной машине показывают, что неаддитивный эффект действия смесей катализаторов с точкой максимума по составу смеси может наблюдаться в сложных реакциях при определенных сочетаниях различных кинетических порядков в каждой из составляющих реакций катализаторов. [c.66]

    Схема анализа углеводородов 50-градусных фракций нефтей приведена на рис. 2.1. В принятой нами схеме одним из основных методов разделения нефти является ректификация по температуре кипения. Атмосферно-вакуумная разгонка нефтей проводилась на аппарате АРИ-2 (ГОСТ 11011 — 64). Из фракций двухступенчатой жидкостно-адсорбционной хроматографией на силикагеле марки A M (фракции 200—300°С) или АСК (фракции 300—490°С) и оксиде алюминия углеводороды разделены на группы насыщенных и ароматических углеводородов. При хроматографическом разделении пользовались комбинацией элюентного (для выделения углеводородной части) и вытеснительного (для вытеснения смолистой части) методов. Применялся следующий элюирующий ряд гексан, гексанбензол (1 1 по объему), бензол, этанолбензол (1 1). К парафинонафтеновым углеводородам относят фракции с показателем преломления nf до 1,49. Ароматические углеводороды составляют группы, объединяющие хроматографические фракции по этому показателю I группа — 1,49 < nf 1,51 И — 1,51< nf <1,53 m-l,53< f <1,59 IV -> 1,59. При разделении на силикагеле четкого перехода от одной группы к другой не наблюдается, часто условно разбитые группы углеводородов загрязнены примесями предыдущих и последующих фракций. Поэтому для более четкой дифференциации полученные на силикагеле фракции углеводородов и промежуточные фракции подвергаются повторному разделению на оксиде алюминия (нейтральная, активность И, по Брокману). [c.34]

    Природные сорбенты используются в различных отраслях промышленности для осветления вин, масел и др. В нефтеперерабатывающей промышленности они применяются как для контактной, так и для нерколяционной очистки нефтепродуктов, а также для доочистки смазочных масел после основной обработки их селективными растворителями. В последние годы расширяются исследования по получению активных углей, силикагелей, алюмосиликатных катализаторов и адсорбентов, включая и синтетические цеолиты — молекулярные ста, по улучшению свойств природных сорбентов путем их активации и модификации. [c.5]

    Результаты Бартела и Фу[ ]для угля из сахара и обезвоженного силикагеля приведены в табл. 48. Удельные поверхности, полученные этим методом при применении пяти различных жидкостей для каждого адсорбента, привели к превосходному совпадению. Средняя величина поверхности угля составляет 630 л /з, силикагеля — 450 л /г. Образец силикагеля, содержавший 4% воды, обладал средней удельной поверхностью в 720 л /з. В свете опытов по адсорбции газов, проводившихся на различных углях и силикагелях, все три величины кажутся справедливыми. Так, например, силикагель, применявшийся Райерсонохм и Камероном[ ] и Брунауером и Эмметом[ ], имел удельную поверхность 500 м г, в то время как наиболее активный силикагель, примененный Мак-Гэвеком [c.416]

    Правильность определения границы между метано-нафтеновыми и ароматическими углеводородами по скачку значений относительной дисперсии и четкость этой границы можно хорошо проконтролировать другим показателем — выходной кривой , выражающей зависимость количества эллюированного вещества от объема прошедшего растворителя [50, 51]. В микрохроматографическом разделении объем десорбента, пошедшего на вымывание каждой микрофракции, резко меняется при переходе от метано-нафтеновых к ароматическим углеводородам. Поэтому все микрофракции, полученные до резкого подъема выходной кривой , построенной по времени выхода или по объему десорбента, относились к метано-нафтеновым углеводородам. В описываемом методе микрохроматографического разделения масла при активности силикагеля 12—14 мл по бензолу [45] и весовом соотношении вещество— силигакель, равном 1 100, удавалось четко отделить петролейным эфиром насыщенные углеводороды от ненасыщенных, так как после вытеснения насыщенных углеводородов из колонки некоторое время (в отдельных опытах до 2 час.) вытекал чистый растворитель [52]. [c.49]

    Адсорбент действует только своей поверхностью, причем адсорбционный слой очень тонок — он мономолекулярен (второй слой молекул адсорбтива не удерживается па поверхности адсорбента, вследствие слабости сил снеплегтя — первый слой экранирует их). Поэтому количество адсорбированного вещества становится значительным только при больших поглощающих поверхностях. Этому требованию отвечают высокопористые материалы с хорошо развитой внутренней поверхностью. Сюда относятся активированный уголь , силикагель, сухой торфяной порошок , почва, некоторые оксиды. Так, например, суммарная поверхность всех пор, пронизывающих 1 г активированного угля, равна приблизительно 1000 м . Следовательно, для получения активной поверхности по своей площади, равной 1 га, достаточно всего лишь 10 г угля (одна единственная пробирка зернышек его )- [c.132]

    Известные способы получения пористых адсорбентов можно разделить на четыре группы [227, 228] 1) активирование гру-бодисперсиых материалов воздействием химически агрессивных сред, например получение активных углей действием газов-окис-лителей на кокс или пропиткой органического материала некоторыми солями с последующей их химической обработкой 2) коллоидно-химическое выращивание частиц золей с последующим получением из них гелей с рыхлой упаковкой (при высу шиваиии таких гелей образуется структура с боЛьЩим числом пор-зазоров между частицами силикагели, алюмосиликагели и др.) 3) синтез пористых кристаллов — цеолитов, обладающих свойствами молекулярных сит (размеры каналов в таких кристаллах составляют 0,4—1,0 нм) 4) термическое разложение карбонатов, гидроксидов, оксалатов, некоторых полимеров при умеренных, во избежание спекания, температурах (получение активных оксидов, некоторых пористых активных углей, губчатых металлов). Как видно, получение адсорбентов является весьма сложной задачей, для решения которой необходимы значительные энергетические ресурсы, использование дорогостоящих химических реактивов, сложной аппаратуры и больших затрат времеии. [c.154]

    В свете сказанного выше рассмотрим процесс разделения мальтенов гудрона котуртепинской нефти на группы с использованием одной из модификаций широко распространенной методики определения группового состава [22]. Разделение проводили на активном силикагеле при соотношении адсорбент проба 200 1. В качестве растворителей последовательно использовали чистый изооктан для элюирования насыщенных углеводородов и смеси изооктана с бензолом, содержащие 5, 10, 15, 20, 25 и 30% (объемн.) бензола, для элюирования трех групп ароматических углеводородов. Первую групп смол элюировали бензолом, вторую - спиртобензольной смесью. В процессе разделения отбирали фракции элюата равного объема, масса которых после анализа состава растворителя и его последующего отгона служила основой дпя построения элюционной кривой выхода разделенного нефтепродукта из колонки, а показатели преломления этих фракций использовали для определения границ хроматографических групп. Кривые состава подвижной фазы по каждой фракции злюата получены на основе газохроматографического анализа. Полученные результаты представлены на рис. [13]. Как и следовало ожидать, концентрационные кривые растворителей, входящих в состав подвижной фазы, показывают, что в слое адсорбента произошло расслоение подвижной фазы, которое привело к образованию ряда фронтальных зон бензола и этанола. Предполагалось, что число фронтальных зон бензола будет соответствовать числу изменений его концентраций от 5 до 100%, т. е. будет образовано 7 таких зон. Однако достаточно четко прослеживается наличие только четырех зон. Вероятно, это связано с низкой эффективностью колонки вследствие того, что колонка была заполнена крупными частицами силикагеля (0,25-0,5 мм) и элюирование проводили в нисходящем потоке подвижной фазы. Несмотря на это, можно видеть, что движение фронтальных зон подвижной фазы по слою адсорбента вызьшает вытеснение, выталкивание этим фронтом тех адсорбированных соединений нефтепродукта, адсорбционная способность которых ниже адсорбционной способности этого растворителя. [c.41]

    Хотя фирмы выпускают силикагель возможно более узких фракций, все же товарный силикагель необходимо еще раз поделить на фракции посредством просеивания или седиментации, а затем, если необходимо, промыть разбавленным раствором гидроксида натрия, органическими растворителями, например хлороформом, метанолом, и водой и после этого высушить. Чтобы получить адсорбент с заданной активностью, надо добавить к сухому адсорбенту отмеренное количество дистиллированной воды. Можно проводить дезактивацию, добавляя такие спирты, как пропанол, этиленгликоль, глицерин, но чаще всего дезактивируют силикагель водой. Активность этого адсорбента обычно определяют с помощью азокрасителей [33] методика определения подробно описана в разд. 4.2.3. Соотношение между количеством введенной воды и полученной активностью адсорбента показано в табл. 4.4. В большинстве случаев для хроматографирования пригоден адсорбент, содержащий 10—12% воды. Если же содержание воды превышает 16%, то разделение идет по механизму, характерному для распределительной хроматографии (ЖЖХ). Далее мы обсудим способы приготовления силикагеля, его разделения на фракции, дезактивации, регенерации, а также пропитки нитратом серебра. [c.162]

    Основная форма оксида алюминия (щелочной оксид алюминия) дает водный экстракт с pH 9,5—10,5 в зависимости от условий получения. Если при изготовлении оксида алюминия его недостаточно тщательно отмыли от примеси карбоната натрия, то при прокаливании местами образуется алюминат натрия, который при повышенной температуре гидролизуется водой, вследствие чего получается экстракт со щелочной реакцией. Щелочной оксид алюминия пригоден для разделения ненасыщенных и ароматических углеводородов, стероидов, алкалоидов, синтетических красителей и других соединений, устойчивых в щелочной среде. В продажу обычно поступают определенные фракцик оксида алюминия пригодные для хроматографии фракции можно получить седиментацией (см. выше получение фракций силикагеля причем длительность седиментации оксида алюминия вдвое меньше). Активность товарных образцов различна. Чтобы получить максимальную активность (активность I), слой оксида алюминия толщиной 3—5 см прокаливают 6—8 ч при 350 °С, периодически помешивая. Затем дают адсорбенту немного (в течение 5 мин) остыть и помещают небольшое его количество в бутыль для хранения, которую равномерно обогревают, вращая ее вместе с адсорбентом, после чего всыпают в эту бутыль оставшуюся часть еще горячего адсорбента. Бутыль плотно закупоривают резиновой пробкой. Разработан и другой [c.166]


Смотреть страницы где упоминается термин Получение активного силикагеля: [c.57]    [c.317]    [c.8]    [c.577]    [c.55]    [c.234]    [c.168]    [c.19]    [c.322]    [c.319]   
Смотреть главы в:

Практикум по неорганической химии -> Получение активного силикагеля




ПОИСК





Смотрите так же термины и статьи:

Силикагели получение

Силикагель



© 2025 chem21.info Реклама на сайте