Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды ненасыщенные, разделение

    Цеолиты являются эффективным средством для разделения многокомпонентных смесей углеводородов. Процессы разделения основаны на двух свойствах цеолитов молекулярно — ситовом действии и резко выраженной избирательной адсорбции ненасыщенных углеводородов и полярных молекул. В этой главе рассмотрены вопросы избирательности адсорбции на цеолитах. [c.344]


    Установлены некоторые эмпирические правила, помогающие при выборе элюента. Сорбция, как правило, увеличивается с ростом числа двойных связей и ОН-фупп в соединениях. Сорбция уменьшается в ряду органических соединений кислоты > спирты > альдегиды > кетоны > сложные эфиры > ненасыщенные углеводороды > насыщенные углеводороды. Для разделения веществ разной полярности и для разделения соединений разных классов применяют нормально-фазовую хроматофафию из неполярных подвижных фаз соединения разных классов выходят из колонки с полярным адсорбентом за разное время (время удерживания соединений с разными функциональными фуппами увеличивается при переходе от неполярных соединений к слабополярным). Для очень полярных молекул так велики, что при использовании неполярного элюента анализ невозможен. Для уменьшения времени удерживания полярных сорбатов переходят к полярным элюентам. В обращенно-фазовом варианте неподвижная обращенная фаза сильнее адсорбирует неполярные компоненты из полярных элюентов, например из воды. Снижая полярность элюента добавлением менее полярного растворителя (метанол), можно уменьшить удерживание компонентов. [c.311]

    Очень удобен для разделения хлорированных углеводородов. Ненасыщенные соединения вымываются быстрее, чем насыщенные Действуют аналогично трифенилфосфату, хотя менее эффективно Действуют более селективно, чем эфиры ароматических кислот [c.83]

    В нашей стране, при наличии огромных ресурсов такого возобновляемого углеводородного сырья, приходится констатировать тот факт, что химия и технология энерго- и ресурсосберегающих процессов переработки этих весьма богатых реакционноспособными классами углеводородов альтернативных источников продолжает оставаться в основном в рамках методических и лабораторных разработок. Это связано прежде всего со сложностью химического состава альтернативных углеводородов, отсутствием надежных и экономичных способов и технологий их первичной и вторичной переработки, а также высокими требованиями к чистоте получаемых из них химических продуктов. Отмеченные причины ограничивают использование возобновляемых углеводородов по сравнению с нефтяными, хотя по способности к химическим превращениям и экологической чистоте они существенно превосходят нефтяные за счет наличия в них большого количества различных функциональных групп, значительной ненасыщенности и присутствия кислородсодержащих соединений (главным образом, кислот и спиртов). Такое состояние, связанное с неиспользованием альтернативных горючих углеводородных источников, разрешимо только при наличии методов их первичной и вторичной переработки, разделения их на индивидуальные компоненты, а также эффективных способов синтеза индивидуальных олефиновых углеводородов (ненасыщенных кислот) с достаточно высокой степенью чистоты. На сегодняшний день этот вопрос для таких многотоннажных и вместе с тем сложных по составу жидких, богатых олефинами продуктов первичной переработки маслосодержащих альтернативных источников углеводородов, получаемых на основе разложения древесины и растительных масел, еще не решен. [c.310]


    Экстрактивную перегонку используют не только для разделения бинарных смесей, ее применяют также для выделения отдельных компонентов из многокомпонентных смесей, например бензола из нефтяных фракций [72]. Смеси насыщенных и ненасыщенных углеводородов с почти одинаковыми температурами кипения разделяются экстрактивной ректификацией в присутствии эфиров кетокислоты [73 ]. В последнее время большое значение приобретает разделение низших углеводородов i—Сз [74]. Кар-нер с сотр. [75] исследовал эффективность разделения смеси метилциклогексан—толуол в насадочных колоннах при экстрактивной ректификации с добавлением фурфурола на основании полученных данных были выведены уравнения для расчета процесса ректификации. [c.318]

    В связи с тем что углеводороды и полимеры, содержащиеся в отработанной кислоте, представляют собой ненасыщенные соединения, были предприняты попытки гидрировать катализатор, чтобы перевести полимеры в нерастворимые в кислоте насыщенные углеводороды. Пробовали также вести алкилирование под давлением водорода. Для экстрагирования растворенных или химически связанных полимеров из кислоты был опробован ряд растворителей. Была изучена также возможность разделения кислоты и полимеров кристаллизацией кислоты с последующей отмывкой полимеров. Такое направление представляется перспективным,, исследования проводились на нескольких крупных пилотных установках. Следующая за этой статья [2] посвящена этому вопросу. [c.225]

    Гидрогенизационные процессы являются, по-видимому, единственным перспективным способом переработки больших объемов смол низкотемпературного пиролиза и гидрогенизации углей, а также генераторных смол. Их использование позволяет значительно увеличить выход ароматических углеводородов и фенолов, заведомо получить материалы и вещества, свободные от серы и ненасыщенных соединений, упрощает состав получаемой смеси, что облегчает разделение и очистку конечных продуктов. Однако применение гидрогенизационных схем станет возможным только при [c.204]

    Характерной особенностью реакции каталитического гидрирования окиси углерода является то, что образующиеся углеводороды как насыщенные, так и ненасыщенные представляют собой соединения с прямой цепью углеводороды изостроения получаются в небольшом количестве. У олефинов двойная связь находится на конце цепи или вблизи его. Такое преимущественное образование соединений нормального строения имеет особое значение для органического синтеза, так как позволяет выделять индивидуальные вещества или смеси, состоящие всего лишь из нескольких однородных химических веществ, на всем протяжении гомологического. ряда вплоть до соединений с довольно высоким молекулярным весом. Из сырой нефти или из продуктов ее крекинга можно выделить только углеводороды с числом атомов углерода, не превышающим шести, поскольку трудности разделения изомеров резко возрастают по мере дальнейшего увеличения их числа. [c.59]

    ЦИЙ разрыва углеродной цепи, а также следы весьма ненасыщенных Сд—С5-углеводородов. Как и при разделении газообразных продуктов крекинга, выделить С4 фракцию легко сложнее извлечь дивинил из этих С -угле-водородов. [c.211]

    Применение экстрактивной ректификации не ограничивается разделением двойных смесей ее применяют также и для выделения определенных веществ из многокомпонентной смеси, например для извлечения бензола из нефтяных фракций [33]. Смеси насыщенных и ненасыщенных углеводородов с близкими температурами кипения могут быть разделены экстрактивной ректи фикацией с добавкой кетоэфиров [34]. За последнее время приобрело значение разделение низших углеводородов С — с применением азеотропной ректификации [35 [. [c.348]

    Способность ненасыщенных углеводородов к образованию комплексных соединений с твердыми медными солями и растворами медных солей известна давно. В литературе имеются многочисленные указания на возможность применения солей одновалентной меди и серебра для эффективного разделения углеводородов различной степени насыщенности и, в частности, для отделения диолефинов от моноолефинов и олефинов от парафинов. [c.615]

    Гидрирование ненасыщенных углеводородов при этом проводилось не в жидкой фазе, а проще и с затратой меньшего времени — в одной из капиллярных колонок катализатором служил алюминиевый капилляр, на который был нанесен слой платины. Этим путем был осуществлен непрерывный метод анализа. Применение капиллярных колонок, кроме того, привело к улучшению разделения продуктов гидрирования. [c.247]

    Молекулярные сита типа 13Х имеют принципиально иную структуру и наряду с соединениями нормального строения адсорбируют также углеводороды разветвленного строения и циклические. Они применяются для адсорбции соединений, размеры молекулы которых слишком велики для возможности адсорбции ситами типа 4А или 5А. Хотя размеры пор в молекулярных ситах типа 13Х слишком велики для разделения по размерам молекул многих интересных в промышленном отношении систем, этот продукт обладает всеми другими ценными свойствами молекулярных сит, в частности высоким сродством к полярным и ненасыщенным соединениям. [c.67]


    Разделение на основе избирательной адсорбции ненасыщенных углеводородов [c.344]

    Цеолиты — полярные адсорбенты, поэтому адсорбционное разделение веществ на них можно проводить, используя не только разницу в молекулярных размерах, но и различную степень ненасыщенности и полярности. Критический диаметр сильно адсорбируемых полярных молекул углеводородов с двойными и тройными связями может даже несколько превышать диаметр окон. [c.94]

    Постоянные газы полностью разделяются на сополимерах стирола и дивинилбензола при температуре —78° С (рис. 22) [1, 2] СО2 и NgO хорошо разделяются при комнатной температуре [1, 3—5] (рис. 23) метан и другие углево-дородные газы — при комнатной и более высоких температурах (рис. 24). Легкие углеводороды разделяются на полимерных сорбентах в соответствии с числом атомов углерода и наличием разветвлений в цепочке [6], причем, как уже отмечалось, легкие ненасыщенные углеводороды элюируют несколько раньше соответствующих насыщенных аналогов (этилен перед этаном, пропилен перед пропаном). Циклические углеводороды появляются на хроматограмме после соответствующих молекул нормального строения. На пористых полимерах удается разделение некоторых пространственных изомеров — цис- и тронс-бутенов [7] (рис. 24). Характеристики удерживания компонентов после нескольких месяцев работы колонок с полимерным сорбентом остаются постоянными [8]. [c.108]

    Углеводороды с длинной цепью, спирты, альдегиды, кислоты, моно-глицериды, диглицериды, триглицериды и аналогичные липиды можно разделять методом адсорбционной ХТС на классы соединений, обладающих различной полярностью, в зависимости от природы и числа функциональных групп в них. Большие различия в длине цепи и степени ненасыщенности компонентов данного класса соединений в редких случаях могут приводить к дополнительному фракционированию внутри этого класса соединений. Подобное дополнительное фракционирование выражено, однако, не столь отчетливо, чтобы это могло осложнить разделение на отдельные классы соединений. [c.149]

    Низкотемпературные ректифицирующие приборы должны иметь трубку для ввода образца, снабженную манометром и устройством для удаления влаги, углекислого газа, сероводорода или других газов, которые могут затвердевать. Присутствие воды может привести к ошибочной характеристике и плохому разделению ненасыщенных Сд- и С4-углеводородов, вызванному, вероятно, образованием гидратов. Подбильняк [45, 46] считает, что такого рода гидраты , не всегда разлагаются осушающими веществами. [c.354]

    Разделение этилена (т. кип.—104°) и этана (т. кип. —89°) не слишком трудно, однако его редко пытаются достичь, потому что можно сохранить время, собирая оба компонента в одну фракцию и определяя долю каждого с помощью газового анализа всей фракции. Отделение этана от пропилена или пропана достаточно четко, потому что имеется большая разница температур кипения то же самое справедливо для разделения пропана и изобутана. Разделения пропана и пропилена можно избежать, потому что летучесть их почти одинакова, а анализ фракций, содержащих эти два углеводорода, весьма прост. Анализ смеси, содержащей различные насыщенные и ненасыщенные С4-углеводороды, требует как высокой степени ректификации, так и применения дополнительных [c.358]

    Кайзер [163] рекомендует углеродные молекулярные сита типа В для разделения насыщенных и ненасыщенных углеводородов (<Св), низших спиртов, формальдегида и газообразных неорганических соединений. [c.329]

    Насыщенные углеводороды можно отделять от ненасыщенных углеводородов хроматографическим разделением на силикагеле. Насыщенную фракцию можно далее разделять на норлЛьные парафины и изопарафины селективной адсорбцией на молекулярном сите типа 5-А [68]. Нормальные углеводороды, содержащие 5—28 атомов углерода, поглощаются количественно, а изоуглеводороды при этом не поглощаются. Как будет показано ниже, нормальные углеводороды можно отделить от изо- и антеизосоединений во время анализа методом ГЖХ, если в газовый поток включить колонку с молекулярным ситом, которую используют как фор-колонку [86] или помещают между аналитической колонкой и детектором [18]. [c.457]

    Спирты жирного ряда выделяют из неомыляемой фракции липидов путем образования комплексных соединений с мочевиной или же путем жидкостноадсорбционной хроматографии на окиси алюминия. Спирты жирного ряда можно разделять методом ГЖХ, как таковые, или в виде ацетатов, или в виде исходных углеводородов. Наилучшее разделение насыщенных и ненасыщенных соединений с 18 атомами углерода достигается при хроматографическом разделении ацетатов на колонках, заполненных полиэфиром. Двуатомные спирты и спирты с числом атомов углерода более 20 лучше разделять, предварительно превращая их в соответствующие углеводороды. [c.468]

    Окислы азота могут попадать с воздухом в ВРУ, расположенные вблизи производств азотной кислоты. В присутствии окиси азота ускоряется процесс полимеризации ненасыщенных углеводородов и особенно бутадиена и циклопентадиена. Физико-химические процессы взаимодействия окислов азота с органическими продуктами, которые могут накапливаться в аппаратуре ВРУ в условиях Н1ИЗКИХ температур, еще недостаточно изучены. Однако случаи взрывов концентрированных углеводородных смесей с окислами азота в аппаратуре низкотемпературной промывки промышленных газов и ВРУ дают основания считать окислы азота весьма опасными примесями в воздухе, поступающем на разделение. Такая опасность усиливается прн повышении температуры во время отогрева и последующих пусках ВРУ. [c.371]

    Прп разделении газов крекинга и пиролиза нефтепродуктов, являюп.ихся основным сырьем для промышленности органического сштеза, значительную опасность представляет оксид азота. При высоких давлениях и низких температурах оксид азота превра1 ается в диоксид и азотистый ангидрид. Последний, реагируя ненасыщенными углеводородами и особенно с диолефи-нами, образует смолообразные нитросоедннения, которые могут бурно разлагаться в теплообмепной аппаратуре, вызывая возрастание давления и возможное разрушение аппаратуры. Кроме гого, азотистые соединения отравляют некоторые катализаторы, В связи с этим в ряде случаев газы очищают гидрированием азотистых примесей. [c.233]

    Если желательно получать в основном низшие олефины, то температуру крекинга поднимают до 750°. Эти же вещества часто получают, расщепляя в присутствии водяного пара те легкие бензиновые фракции, которые не могут быть использованы в качестве моторного топлива. При этом образуются газовые смеси, содержащие около 22% этилена, 10% пропилена, 12 /о ненасыщенных Сгуглеводородов, 20% насыщенных низших углеводородов и около 30% бензина (при применении сырой нефти образуется до 30% смолы и кокса). Разделение таких смесей осуществляют путем низкотемпературной перегонки. [c.91]

    Размер пор молекулярных сит СаА почти совпадает с размером поперечного сечения цепочек углеводородов нормального строения они не адсорбируют углеводородов изостроения и циклостроения. Цеолиты СаХ адсорбируют не только нормальные парафиновые углеводороды, но и изо-парафиновые, нафтеновые, ароматические углеводороды, нафталин, хинолин, тиофен, пиридин и их производ-ньге. Ошг ке поглощают сложных конденсированных ароматических углеводородов. У цеолитов МаХ поры довольно велики 8—10 А. Они обладают большим сродством к неполярным и ненасыщенным соединениям. Применяются для разделения углеводородов свыше Св- [c.90]

    Для разделения ненасыщенных углеводородов растворы AgNOз в этиленгли-коле, ДИ-, три- и полиэтиленгликоле Для разделения легких и средних углеводородов, ароматических соединений, эфиров жирных кислот НЖФ — общего применения. Для разделения фреонов, аминов иС0Ы-50НВ-2000 [c.105]

    Извлечение ароматических углеводородов Разделение пропан-пропи-леновой и этан-этилено-вой фракций Извлечение ненасыщенных [c.213]

    Можно также предварительно нагретое ароматическое сырье перекачивать в промежутбчную емкость без добавки водорода для полимеризации ненасыщенных. После удаления высококипящих компонентов к сырью добавляют водород, нагревают до 320° С и пропускают через реактор. Этот процесс был разработан Баденской фабрикой и компанией Шольвен и осуществлен в промышленном масштабе на металлургическом заводе Юнайтед стейтс СТИЛ в Клертоне (Пенсильвания). Как на этой установке, так и на заводе Джонс энд Лафлин стил в Аликвиппе (Пенсильвания), для разделения ароматических углеводородов от насыщенных и получения целевых продуктов высокой чистоты используется процесс экстракции юдекс (водньш гликолем). [c.156]

    Лигандообменную хроматографию применяют для разделения в водной среде соединений, представляющих большой интерес для органической химии и биохимии аминов, аминокислот, белков, нуклеотидов, пептидов, углеводов. При этом в вчестве комплексообразующих используют ионы меди, цинка, кадмия, никеля, серебра и железа. Ионы ртути и серебра в неполярной среде алифатических углеводородов образуют лабильные комплексы с ненасыщенными и ароматическими углеводородами. Большими достоинствами лигандообменной хроматографии является ее селективность и отсутствие жестких требований к сорбенту, который может быть прочно связан ионами металла или только пропитан солями металла. [c.82]

    Продукт, содержащий 8-12% полимера, незаполимеризовавшиеся мономеры и метилхлорид, в переточной трубе смешиваются со стоппером (метиловым или изопропиловым спиртом) для дезактивации катализатора и поступают через крошкообразователь в водный дегазатор 7 (рис.7.31). Удаление основной массы метилхлорида и ненасыщенных углеводородов осуществляется при 345 3 К в дегазаторе первой ступени. Тепло, необходимое для удаления летучих продуктов, подводится за счет подогрева циркуляционной воды и острого пара высокого давления, подаваемого в крошкообразователь. В дегазатор первой ступени вводятся антиагломератор (суспензия стеарата цинка или кальция) и дисперсия антиоксиданта в воде (например, неозон Д или продукт 2 246). Пары растворителя и мономеров проходят холодильники 20 21, где конденсируются водяные пары, и направляются на компримирование, разделение и переработку возвратных продуктов. [c.330]

    Поданным Холлиса [1, 17] и Богарта [20], легкие углеводороды разделяются на полимерных сорбентах на основе стирола и дивинилбензола в соответствии с числом атомов углерода и наличием разветвлений в цепочке. При этом легкие ненасыщенные углеводороды элюируют несколько раньше соответствующих насыщенных аналогов (этилен перед этаном, пропилен перед пропаном), т. е. в порядке, обратном характерному при разделении на таких фазах, как диметилсульфолаи, что позволяет рекомендовать использование пористых полимерных сорбентов на основе сополимеров стирола и дивинилбензола для определения примесей ненасыщенных соединений в насыщенных. [c.28]

    Хроматография на силикагеле, импрегнированном нитратом серебра, которая позволяет разделять соединения по степени их ненасыщенности, может быть успешно применена для разделения триглицеридов и диглицеридов (после ацетилирования). Распределительная обращенно-фазовая хроматография позволяет разделять триглицериды в соответствии с их коэффициентами распределения. Дополнительная двойная связь оказывает действие, приблизительно равное удалению двух атомов углерода из молекулы так, например, три-О-пальмитоилглицерин и три-О-олеоилглицериН ведут себя одинаково. Распределительную хроматографию проводят на бумаге или в тонком слое, используя в качестве неполярной стационарной фазы углеводород или силиконовое масло, в качестве подвижной фазы — смесь ацетона с ацетонитрилом, метанолом или уксусной кислотой. [c.86]

    Низкошолекулярные летучие олефины. В связи с терпеновыми углеводородами следует отметить работу Прея, Бергера и Бербалка [49] по разделению ненасыщенных низкомолекулярных олефинов. Рассмотренный как здесь, так п в главе о липидах (стр. 175) метод ХТС, касающийся продуктов присоединения ацетата ртути, можно также с успехом перенести на производные терпенов. [c.189]

    Такие сильно специфические адсорбенты применяются в газовой хроматографии для разделения молекул, близких по размерам, конфигурации и многим физическим свойствам, но различающихся локальным распределением электронной плотности. На сульфате бария, например, хорошо разделяется смесь изомеров ксилола, причем первым выходит п-ксилол, затем л -ксилол, потом о-кси-лол [316] пики практически симметричны. На рис. П,24 показана зависимость дифференциальной теплоты адсорбции насыщенных, ненасыщенных и ароматических углеводородов для малой (нулевой) пробы gv,i от числа атомов углерода в молекуле. Из этого рисунка видно, что значения 5v,i при адсорбции цикленов и ароматических углеводородов на BaS04 значительно выше значений qv i при адсорбции н-алканов и цикланов с тем же количеством атомов углерода в молекуле. Это указывает на сильную специфичность адсорбции цикленов и ароматических углеводородов на таком адсорбенте. Теплоты адсорбции ксилолов заметно различаются между собой и соответствуют последовательности выхода пиков на хроматограмме. [c.67]


Смотреть страницы где упоминается термин Углеводороды ненасыщенные, разделение: [c.53]    [c.114]    [c.53]    [c.91]    [c.282]    [c.203]    [c.514]    [c.30]    [c.30]   
Лабораторная техника органической химии (1966) -- [ c.513 , c.514 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение на основе избирательной адсорбции ненасыщенных углеводородов

Углеводороды ненасыщенные



© 2025 chem21.info Реклама на сайте