Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение вольфрама вольфрамита

    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]


    В металлическом молибдене, вольфраме и их сплавах натрий определяют методами пламенной атомно-эмиссионной и атомно-абсорбционной спектрометрии [35, 82, 179, 443, 469, 790, 798, 862, 898, 1013]. Молибден и вольфрам в пламени излучают сплошной спектр, который мешает определению малых количеств натрия, поэтому пред- [c.166]

    Восстановление соединений молибдена и вольфрама в степени окисления +6 дает соединения с более низкими степенями окисления. В веществах, известных под названием молибденовой или вольфрамовой сини, молибден и вольфрам нельзя считать входящими в состав одного определенного соединения или имеющими определенную степень окисления. В зависимости от выбора исходных соединений (например, М0О3, МоОз-НгО, молибдаты то же самое для вольфрама), используемого восстановителя (например, 2п, ЗпСЬ или РЬ в солянокислом растворе нагревание МоОз-2Н20 в ампуле при 110 °С с порошкообразным молибденом и т. д.) и продолжительности процесса могут быть получены различные соединения, содержащие оксидные или гидроксидные группы (табл. В.37). В аналитической практике при открытии вольфрама в виде вольфрамовой сини име- [c.621]

    При определении содержания вольфрама вольфрам (VI) восстанавливают в солянокислом или сернокислом растворах с помощью хлорида олова. Восстановление необходимо проводить после прибавления роданида, в противном случае образующиеся низшие соединения вольфрама могут находиться в коллоидном, менее реакционноспособном состоянии. Оптимальная кислотность для образования комплексного соединения создается 8,5—9,5 М раствором соляной кислоты. Кроме хлорида олова, в качестве восстановителя применяют (III). Оптимальная кислотность при использовании этого восстановителя соз- [c.171]

    Ионные ассоциаты используют сравнительно широко, причем их образует У(У1). Реагенты, использующиеся для фотометрического определения вольфрама (метиловый фиолетовый, родамин С, метиленовый голубой) достаточно чувствительны, но мало избирательны, перед определением вольфрам нужно обязательно отделять. Реагенты, используемые для гравиметрического определения вольфрама ([5-нафтохинолин, риванол, таннин, цинхонин) селективно осаждают вольфрам, однако продукты реакции количественно не охарактеризованы, механизм взаимодействия не изучен. Нами в данной монографии эти реагенты отнесены к реагентам, образующим ионные ассоциаты, по аналогии с другими аминами, [c.32]

    Вольфрам отделяли от малых количеств натрия (1,2-10 г) осаждением а-бензоиноксимом [685]. Вместе с натрием в фильтрате находятся ионы Си, As, Zn, Сг, Fe. Прием использовали при активационном определении натрия в вольфраме. [c.37]


    Основу — вольфрам отделяют от микроколичеств натрия сорбцией вольфрама Сефадексом ДЕАЕ [898]. Метод применен для определения натрия в вольфраме и его соединениях. [c.47]

    Определение натрия в вольфраме [533]. Метод позволяет. определять 5-10 —10 % натрия в вольфраме и сплавах вольфрам—рений, предел обнаружения натрия равен Спектры возбуждают [c.110]

    Относительная интенсивность изотопических компонентов аналитической линии элемента в минимальной степени зависит от изменения условий испарения или возбуждения атомов элемента в источнике света и определяется только относительной концентрацией изотопов в пробе. Изотопическое смещение для линий урана достигает значительной величины. Например, для линии 4244,4А оно составляет 0,23А. Изотопическая структура этой линии может быть разрешена с помощью спектрографа ИСП-51 с камерой УФ-85. Эта линия наиболее удобна для определения урана в рудах. Недостатком является наложение линии вольфрама. Однако практически вольфрам встречается редко в количестве, способном изменить относительную интенсивность линий урана. [c.251]

    Следы мышьяка, цинка, железа, молибдена и других элементов можно определять в вольфраме [590, 591]. При определении 1,4 1,5 и 2,0 мкг Мо в 0,1 г вольфрама было найдено соответственно 1,2 1,5 и 1,7 мкг Мо. Непосредственному определению молибдена мешают образовавшиеся при облучении потоком нейтронов радиоактивные изотопы вольфрама с относительно большим периодом полураспада. Поэтому сначала осаждают вольфрам и молибден а-бензоиноксимом из кислого раствора, затем отделяют молибден от большей части вольфрама экстракцией роданидных соединений пятивалентного молибдена бутилацетатом. Затем осаждают сульфид молибдена после добавления тартрата для удержания вольфрама в растворе. [c.244]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Спектр вольфрама состоит из большого числа близко расположенных линий, поэтому для определения примесей в вольфраме применяют особые приемы внесения анализируемого образца в источник возбуждения, физическое или химическое концентрирование, либо приборы с высокой дисперсией. Вольфрам переводят в WOa [1147], смешивают с угольным порошком для перевода вольфрама в низколетучую форму. В зоне разряда происходит восстановление вольфрама до металла или образуются труднолетучие карбиды. В некоторых случаях перевод металлического вольфрама в окись осуш ествляется прямо в зоне разряда, причем, если проба была предварительно смешана с угольным порошком, одновременно происходит перевод окиси вольфрама в труднолетучие формы [965]. [c.120]

    Вольфрам. При спектральном определении магния и других примесей в вольфраме возникают трудности, связанные с чрезвычайной сложностью спектра вольфрама, приводящей к наложению линий вольфрама на линии примесей. При определении магния в вольфраме спектр основы подавляют, превращая вольфрам в труднолетучий карбид. Образование карбида оказывается воз-можным благодаря сильному разогреву образца, происходящему вследствие плохого отвода тепла вдоль электрода с пробой, что обусловлено особой формой электрода ( рюмка ). По ГОСТ 14315—69 вольфрам переводят в WOg растворением в 30%-ной перекиси водорода, выпариванием досуха и прокаливанием в платиновой или кварцевой посуде при 550—570° С. Порошкообразные пробы вольфрама переводят в WO3 прокаливанием при 550—570° С. Пробы смешивают с угольным порошком, содержа- [c.174]

    Вольфрам и молибден. Общие требования к методам химического и спектрального анализа Ниобий. Спектральный метод определения вольфрама и молибдена Ниобий. Спектральный метод определения тантала Тантал и его окись. Спектральный метод определения алюминия, ванадия, железа, кальция, кремния, магния марганца, меди, никеля, ниобия, олова, титана, хрома и циркония [c.821]

    III), титана, молибдена (VI) и вольфрама (VI). Однако в ряде работ индийских исследователей показано, что в определенных условиях молибден (VI) и вольфрам (VI) также могут быть оттитрованы аскорбиновой кислотой и что шестивалентный хром легко восстанавливается ею, как и следовало ожидать, исходя из величины нормального окислительного потенциала бихромата. [c.183]

    Метод обладает высокой чувствительностью и селективностью. Недостатком метода является то, что устойчивость и интенсивность окраски комплекса зависит от концентрации ионов роданида, кислотности раствора, порядка смешения реактивов и т. д. Поэтому надежные результаты могут быть получены только при соблюдении определенных условий выполнения анализа. Мето применим для определения молибдена в легированных сталях и сплавах, содержащих Сг, Ni, V, Со, Nb, Та, Re. Мешающее влияние вольфрама (VI) устраняют добавлением лимонной кислоты, связывающей вольфрам в цитратный комплекс. [c.350]

    Вследствие отсутствия подходящих восстановителей, которые восстанавливали бы вольфрам(У1) только до определенного валентного состояния, удобные и быстрые оксидиметрические методы определения вольфрама [c.44]


    Атомы ванадия в решетке окиси ванадия имеют валентность, равную пяти. Когда в качестве примеси в решетку вводится атом вольфрама, появляется один избыточный электрон, так как вольфрам имеет шесть валентных электронов (случай а, рис. 2). Однако при введении атома вольфрама в решетку окисла ванадия шестой валентный электрон вольфрама, связанный со своим атомом но очень сильно, может при термических колебаниях мигрировать сквозь решетку окиси ванадия как переносчик электрического тока или влиять на адсорбцию кислорода на поверхности. Электронейтральность кристалла сохраняется вследствие того, что избыток положительного заряда атома вольфрама нейтрализует избыток электронов, имеюш ихся в кристалле. Однако электрон может мигрировать сквозь решетку и проводить электрический ток, в то время как положительный заряд дол кен оставаться локализованным в том месте решетки, в котором находится атом вольфрама. В результате вольфрам способствует электронной проводимости в твердом веществе. В противоположность этому, когда в решетке окиси ванадия атом ванадия замещен на титан (случай б рис. 2), он отдает только четыре валентных электрона. Пятый электрон, необходимый для валентной структуры кристалла, отдается одним из атомов ванадия, входящих в решетку окисла, что приводит к образованию так называемых положительных дырок в твердом веществе. В этом случае перенос электрического тока и электрическая проводимость возникают при движении этих положительных дырок. В обзорной литературе, указанной во вступительной части этого раздела, довольно подробно излагаются количественные законы, управляющие скоростью движения потока электрических зарядов, и энергетические факторы, управляющие их движением от одного положения в решетке к другому. Дефекты решетки, вызванные либо нестехио-метричностью состава, либо включением инородных примесей, несут ответственность за перенос электронов от твердого вещества к адсорбированной молекуле или, наоборот, за переход электронов из адсорбированной молекулы в решетку. Подобным же образом движение электронов или положительных дырок в твердом веществе имеет большое значение для каталитического поведения полупроводника кроме того, этим можно объяснить быстрое образование дефектов решетки при соударении адсорбирующейся молекулы с поверхностью. Признано также, что дефекты не локализуются в определенном месте решетки (как показано на рис. 1 и 2), а распространяются на довольно большое число атомов. Представления, излагаемые в настоящем разделе, очень упрощены, но будут полезны читателю как предварительная, чисто качественная картина, прежде чем он сможет получить сведения из более авторитетных обзоров (ссылки [4, 6 и 12]). [c.367]

    Значительные трудности представляет определение вольфрама в топливе для авиационных газотурбинных двигателей. Вольфрам попадает в топливо из катализатора в виде сульфида (IV) или продуктов его превращения. Часто для определения вольфрама используют линию 400,9 нм, она в 5 раз менее чувствительная, чем линия 255,1 нм, но свободна от помех. Для анализа выбрана линия 255,1 нм. В начале работы была сделана попытка разработать прямой метод анализа. [c.168]

    Методика определения. Навеску 0,25 г тонкорастертого концентрата в небольшой фарфоровой чашке обрабатывают при нагревании 4—5 мл концентрированной хлористоводородной кислоты. После разлол<ения шеелита и упаривания почти сухой остаток смачивают 3 мл 20%-ного раствора едкого натра. К полученному раствору прибавляют 10 мл насыщенного раствора щавелевой кислоты и содержимое чашки смывают в сосуд для титрования, содержащий 100 мл концентрированной. хлористоводородной кислоты. Сосуд закрывают резиновой пробкой, в которой имеются отверстия для подвода и отвода СОг, для кончика бюретки, солевого мостика и платинового индикаторного электрода. Для удаления кислорода через титруе1у[ый раствор пропускают в течение 30 мин из аппарата Киппа двуокись углерода. Титруют 0,1 и. раствором rS04 при перемешивании магнитной мешалкой и пропускании СО2 до получения скачка потенциала, соответствующего окончанию восстановления вольфрама (VI), после чего оттитровывают вольфрам (V) раствором бихромата калия. [c.389]

    При определении вольфрам следует по возможности избегать сплавления анализируемого материала с карбонатом натрия, перекисью натрия или с пиросульфатами щелочных металлов, так как соли щелочных металлов препятствуют количественному выделению вольфрама кислотами и замедляют его осаждение цинхонином. Это, однако, не явлдется препятствием для применения такого сплавленИя, если оно проводится в качестве предварительной операции перед определением других содержащихся в минерале элементов, например железа (содержание которого определяют в остатке после выщелачивания карбонатного нлава водой). [c.765]

    Суживая область у Железа, вольфрам уменьшает область чистого аустенита при определенных содержаниях вольфрама и углерода область аустенита вообще исчезает, и при закалке эти стали содержат овободные карбиды, а стали, содержащие вольфрам и углерод ниже пределов,. необходимых для исчезпо-ве№ия -у-фазы, после закалки принимают мартеноитную структуру с характерной для нее однородностью и высокой твердостью. [c.100]

    Молибден может быть отделен от вольфрама экстракцией амилацетатом дитиолового комплекса молибдена из соляной кислоты плотностью 1,06 (около 3,7 и.) . При 20—25° комплекс вольфрама при такой кислотности раствора не образуется. Экстракцию проводят в присутствии гидроксиламина, для того чтобы задержать разложение реагента, которое может привести к неполной экстракции молибдена (тормозящее влияние продуктов разложения). Это разделение применяют для определения дитиолом вольфрама в стали. Сходная методика изложена на стр. 804 в этой методике дитиолат молибдена извлекается из 8 н. или более концентрированной серной кислоты, в которой вольфрам не реагирует в заметных количествах. [c.795]

    Для определения алюминия в соединениях вольфрама описан фотометрический метод с помощью арсеназо [5031 вольфрам мешает определению алюминия (допустимо присутствие до 40 мкг вольфрама). Вольфрам отделяют предварительно с помощью Р-нафтохино-лина. Избыток последнего, мешающий определению алюминия, отделяют прибавлением щелочи до сильнощелочной реакции. [c.204]

    При определении натрия в вольфраме (триоксиде вольфрама) вольфрам хлорируют насыщенными парами I4 в токе воздуха [798]. Образец помещйют в лодочку. После отгонки основы остаток растворяют в 5 мл 0,1 раствора НС1и раствор фотометрируют на фотометре фирмы К. Цейсс (модель III). [c.167]

    При определенной концентрации соляной или серной кис лот в растворе шестивалентный вольфрам количественно осаждается р-нафтохинолином, а шестивалентный молибден остается в растворе [Ю ]. Количество вводимых H2SO4 или НС1 для удержания молибдена в растворе должно равняться одной трети от обшего объема анализируемого раствора. Выпавший осадок вольфрама отфильтровывают, промывают 10%-ной НС] и прокаливают до WO3. [c.127]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Молибден отделяют от мешающих элементов (железо и др.) прн помощи а-бензоиноксима, как описано на стр. 122 [1539]. Вместе с молибденом осаждаются также вольфрам, палладий, шестивалентаый хром, пятивалентный ванадий и тантал. Палладий и тантал не мешают последующему определению молибдена, а влияние вольфрама, хрома и ванадия может быть легко устранено. Другие элементы не осаждаются а-безноинокстом. [c.233]

    Для разложения вольфрамовых руд с низким содержанием вольфрама, а также при определении вольфрама в касситерите применяют сплавление пробы с едким натром и последуюшее выщелачивание плава водой. При этом вольфрам в виде растворимого вольфрамата натрия переходит в раствор, в котором можно определить концентрацию вольфрама фотометрическим методом. Для минералов с высоким содержанием вольфрама такой способ разложения обычно не применяют, так как ионы щелочных металлов препятствуют последующему гидролитическому выделению вольфрамовой кислоты. [c.170]

    Определение содержания молибдена и вольфрама дитиоловым методом. Молибден (VI) и вольфрам (V) образуют в сильнокислой среде 4—12 М НС или 6—14 н. H2SO4, окрашенные в сине-зеленый цвет комплексные соединения с дитиолом (3,4-метил-1, 2-димеркаптобензолом) [c.172]

    Присутствие хлоридов, сульфатов, фосфатов в титруемом растворе исключается, так как эти ионы также образуют малорастворимые осадки с закисной ртутью. Равным образом исключается применение органических кислот — винной, щавелевой или лимонной, которые иногда применяются для связывания вольфрама (VI) в комплексное соединение с тем, чтобы в его.присутствии определять молибден (например, при колориметрических определениях) с этими кислотами ртуть также образует осадки. Что касается катионов, то их влияние на определение молибдена и вольфрама обусловлено растворимостью соответствующих вольфраматов и мо-либдатов в данной среде. Так, например, в присутствии бария определение вольфрама делается практически невозможным, так как вольфрамат бария отличается весьма малой растворимостью в разбавленных кислотах и, следовательно, увлечет вольфрам в осадок до титрования, а более сильное подкисление приведет, как уже упоминалось, к растворению вольфрамата ртути. [c.193]

    Для определения 0,002—0,08% вольфрама. В пять стаканов емкостью 150 мл наливают по 25 ил раствора сульфата титана, добавляют 1,25 2,5 3,75 и 5,0 мл стандартного раствора вольфрама концентрации 0,01 мг мл. Раствор в пятой колбе используют для холостого определения. Упаривают растворы до появления паров серной кислоты, охлаждают, добавляют по 10 мл воды и продолжают, как при построении предыдущего калибровочного графика, но переливают слой пзоамилацетата, содер кащин вольфрам, в сухие мерные колбы емкостью 25 мл. [c.104]

    Маскщювать можно также изменением степени окисления определяемого или мешающего элемента. Например, молибден (VI) и вольфрам (VI) образуют комплексы с ЭДТА, не используемые в титриметрии из-за их малой устойчивости. Высокоселективное определение вольфрама и молибдена основано на титровании суммы всех элементов с предварительным восстановлением молибдена и вольфрама до степени окисления +5 и на титровании всех элементов, кроме молибдена и вольфрама, без их восстановления. В кислой среде при pH 2—3 можно проводить титрование тория, скандия, галлия и других ионов в присутствии железа (Ш), если железо маск1цювать восстановлением до степени окисления +2. [c.79]

    Вольфрам (V). Вольфрам (V) определяют титрованием [41] раствором NH4VO3. Например, при определении вольфрама в сталях и шеелитовых концентратах восстанавливают металлическим [c.141]

    В ЭТОМ случае используют амфотерную природу некоторых металлов, таких, как цинк, алюминий, молибден, вольфрам и сурьма эти металлы, извлеченные из раствора катиоиообменной смолой, могут быть затем вытеснены из нее промывкой щелочью. Другие металлы, которые образуют нерастворимые гидроокиси, конечно, остаются на смоле. Некоторые исследователи, применившие этот метод, заявляют, что добились очень хорошего отделения молибдена и вольфрама от железа и алюминия от железа. Однако к этим сообщениям нужно относиться осторожно, так как другие исследователи получали неудовлетворительные разделения. Сейчас, конечно, слишком рано приходить к определенным выводам, но если сам принцип правилен, то, несомненно, кажущиеся расхождения в результатах найдут себе объяснение. [c.74]

    Для определения очень малых количеств вольфрама (и молибдена) можно прибегнуть к каталитическим реакциям с амперометрическим контролем вольфрам (VI) и молибден (VI) катализируют реакцию между перекисью водорода и иодом измеряя ток восстановления выделяющегося иода, можно определять количество вольфрама или молибдена (см. гл. I), вызвавшее эту реакцию. Этим методом воспользовались А. М. Булгакова и Н. П. Залюбов-скаядля определения следовых количеств (порядка 10 7о) вольфрама и молибдена в монокристаллах сульфида кадмия и фторида лития. Обычно определяют сумму обоих элементов, однако вольфрам (VI) можно замаскировать фторидом калия и определить молибден (VI) отдельно. Силу тока измеряли на установке с двумя платиновыми игольчатыми электродами длиной 10 мм при напряжении 50 мв. [c.194]

    Наибольшее распространение получил сернистый вольфрам, подробно изученный М. Пиром. Сернистый вольфрам готовится осаждением сероводородом вольфрамата аммония с последующим разложением кристаллической соли сульфокислоты в присутствии водорода с добавкой сероводорода при температурах около 400°. По литературным данным, разлол<ение при более низких температурах позволяет получать катализатор с более высокой активностью, обладающий селективной способностью и пригодный только для некоторых определенных целей. Сернистый вольфрам в процессе гидрогенизации применяется в форме цилиндриков размером 10X10 мм. При таблетировании под давлением около 5000 ат получают цилиндрики с объемом пор около 50% и насыпным весом около 2,5 кг. В свежеприготовленном катализаторе обычно молярное соотношение 3 = 1 2,2 кроме того, в катализаторе всегда содержится некоторое количество воды и серной кислоты. Наличие последних примесей является результатом окисления воздухом адсорбированных поверхностью катализатора водорода и серы. Обычно срок службы сернистого вольфрама 1,5—2 года, хотя известны случаи более длительного срока службы, достигающего 5 лет. [c.104]

    Обычно оже-спектроскопию и ДМЭ применяют вместе, поскольку аппаратурное оформление обоих методов в принципе одинаково. Чтобы вклад поверхностных атомов в измеряемый спектр был максимальным, в оже-спектроскопии необходимо использовать электроны, падающие иа поверхность иод малым углом скольжения. Модулируя напряжение на замедляющей сетке (рнс. -15), можно получать на детекторе сигнал, соответствующий электронам только определенной энерги [. На рис. -27 показан дифференциальный спектр грани (ПО) вольфра-ма. Обратите внимание, как очищается поверхность вольфрама при удалении примесей углерода и кислорода. Более подробные сведения ио оже-снектросконии можно найти в обзоре Смита [125]. [c.237]

    Для фотометрического определения молибдена и вольфрама в металлическом уране разработана методика, по которой сначала экстрагируют молибден с помощью дитиола. Затем водную фазу обрабатывают двухлористым оловом и извлекают вольфрам в виде его комплекса с дитиолом. Содержание молибдена и вольфрама определяют фотометрированием полученных экстрактов [308]. Аналогичные варианты предложены для экстракционно-фотометрического определения вольфрама в циркалое-2 [309] и металлическом бериллии [310]. [c.250]


Смотреть страницы где упоминается термин Определение вольфрама вольфрамита: [c.66]    [c.539]    [c.313]    [c.389]    [c.127]    [c.180]    [c.89]    [c.307]   
Смотреть главы в:

Фазовый анализ руд и продуктов их переработки -> Определение вольфрама вольфрамита




ПОИСК





Смотрите так же термины и статьи:

Вольфрамиты

Определение вольфрама вольфрамита и гюбнерита

Тантал, определение в вольфрамите отделение от вольфрама



© 2025 chem21.info Реклама на сайте