Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сравнение кристаллов

    Подводя итог всему выше сказанному, можно сделать вывод,, что получить хорошо сформированный, достаточно крупный кристалл даже в условиях, близких к идеальным, очень трудно. Получить хороший кристалл в реальных условиях осаждения из раствора, содержащего много посторонних ионов, практически почти невозможно процесс роста и конечного огранения-кристалла лимитируется многочисленными факторами, разобранными выше. Поэтому нередко необходимы следующие операции отделение нехарактерного осадка от раствора, его перекристаллизация из соответствующего растворителя и обязательное сравнение кристаллов чистого и исследуемого вещества. [c.25]


    Другим неблагоприятным моментом в опубликованных работах является продолжающееся использование в качестве стандарта для сравнения кристаллов антрацена. Хотя антрацен характеризуется почти самой высокой эффективностью по сравнению с другими органическими сцинтилляторами и вследствие этого кажется вполне пригодным для использования в качестве стандарта, он, однако, имеет чрезвычайно большое самопоглощение, так что его эффективность зависит от толщины образца, а поверхность заметным образом повреждается вследствие окисления при хранении его на воздухе. Кроме того, трудно получить безупречные кристаллы антрацена, свободные от внутренних трещин и дефектов. В качестве стандарта для сравнения значительно более удобен был бы жидкий сцинтиллятор, очищенный от кислорода, или стандартный пластический сцинтиллятор, стабильность которого во времени проверена. [c.202]

    Вымораживание является менее эффективным способом борьбы с кристаллообразованием в топливах по сравнению с добавкой этилцеллозольва. Даже длительное вымораживание при низких температурах не устраняет полностью образования кристаллов льда. Оно только уменьшает количество растворенной воды в топливе и тем самым уменьшает потенциальную возможность образования кристаллов льда в топливе, залитом в баки самолета. [c.52]

    Для исследования структуры кристаллов и ж идкостей применяется также нейтронография. Преимущество нейтронографии по сравнению с другими дифракционными методами исследования заключае-ется в возможности установить пространственное положение атомов водорода, что особенно ценно при изучении биологических объектов и помогает решению фундаментальных проблем молекулярной биологии. [c.154]

    Сравнение реакционной способности ступенчатых поверхностей кристалла с реакционной способностью нанесенных Р1-катализаторов показывает, что структура полидисперсных частиц Р1 в катализаторе может быть с успехом воспроизведена ступенчатыми поверхностями. Установлено, что атомарные ступени играют определяющую роль при превращениях углеводородов, а также при диссоциации Н2 и других двухатомных молекул с большой энергией связи [237]. Показано, что реакция дегидрирования циклогексана до циклогексена не зависит от структуры поверхности монокристалла Р1 (структурно-нечувствительная реакция). В то же время реакции дегидрирования циклогексена и гидрогенолиза циклогексана структурно-чувствительны. В свете полученных результатов предложена [238] расширенная классификация реакций, зависящих от структуры поверхности металла. А именно, предложено отнести к особому классу реакции, скорость которых зависит от размера активных частиц катализатора или от плотности атомарных ступенек и выступов на них, и реакции, скорость которых зависит от вторичных изменений структуры поверхности катализатора (например, из-за образования в ходе реакции углеродистых отложений, а также других эффектов самоотравления). На основе проведенного анализа предложена модель каталитически активной поверхности Р1, учитывающая атомную структуру поверх- [c.165]


    Реальный кристалл отличается от идеального тем, что в результате условий его генезиса имеются различные нарушения решетки. К таким нарушениям относится дислокация, т. е. различные искажения плоскостей решетки по сравнению с геоме-- [c.339]

    Твердые вещества, при растворении которых в воде и других полярных растворителях, образуются электролиты, являются, как правило, кристаллическими телами, имеющими ионные или близкие к ионным решетки. В чисто ионных решетках не существует молекул вещества, и кристалл любой величины можно рассматривать как одну огромную молекулу. Ионы противоположных знаков, составляющие такую решетку, связаны между собой большими электростатическими силами. При переходе ионов Е раствор, энергии электростатического взаимодействия ионов в решетке противопоставляется энергия взаимодействия ионов с дипольными молекулами растворителя, который втягивает ионы решетки в раствор. При этом ионы окружаются молекулами растворителя, образующими вокруг иона сольватную (в частном случае — гидратную) оболочку. Энергия взаимодействия ионов различных знаков, перешедших в раствор и окруженных сольватными оболочками, уменьшается по сравнению с энергией их взаимодействия в решетке (при равных расстояниях г между ионами) обратно пропорционально диэлектрической проницаемости растворителя О в соответствии с законом Кулона  [c.391]

    Кристаллы церезинов имеют игольчатое строение. В их состав наряду с парафиновыми углеводородами входят твердые нафтеновые ароматические углеводороды с длинными боковыми цепями. При одной и той же температуре плавления церезины характеризуются большими по сравнению с парафинами плотностью, вязкостью и молекулярным весом, что видно из приведенных ниже данных  [c.23]

    Наблюдение за помутнением и появлением кристаллов в бензине проводят с помощью прибора с зеркальным отражением света (рис. 30) визуальным сравнением охлажденного и неохлажденного образца топлива. [c.77]

Рис. 16-5. Абсолютные энтропии различных элементов в виде кристаллов, жидких или газообразных (одноатомных или многоатомных) веществ. Многоатомные газы обладают больщей энтропией по сравнению с одноатомными газами из-за больщей массы молекулярных частиц. Все одноатомные газы имеют приблизительно одинаковую молярную энтропию, несколько возрастающую пропорционально массе их атомов. Кристаллы с прочными связями имеют Рис. 16-5. <a href="/info/3622">Абсолютные энтропии</a> <a href="/info/570821">различных элементов</a> в <a href="/info/975356">виде кристаллов</a>, жидких или газообразных (одноатомных или многоатомных) веществ. <a href="/info/463612">Многоатомные газы</a> обладают <a href="/info/199843">больщей</a> энтропией по сравнению с <a href="/info/359581">одноатомными газами</a> из-за <a href="/info/199843">больщей</a> <a href="/info/532">массы молекулярных</a> частиц. Все <a href="/info/359581">одноатомные газы</a> имеют приблизительно одинаковую <a href="/info/133301">молярную энтропию</a>, несколько возрастающую пропорционально массе их атомов. Кристаллы с <a href="/info/365145">прочными связями</a> имеют
    Особенностью этого вида разрушения по сравнению с обычной коррозионной усталостью является соизмеримость периодически напряженных участков с размерами отдельных кристаллов металла (напряжения второго рода). В связи с этим на кавитационную стойкость сплавов большое влияние оказывают механическая прочность, структура и состояние границ зерен сплава. Например, чугун с шаровидным графитом более устойчив к кавитации, чем обычный чугун, а еще более устойчивы стали. [c.341]

    Правомерность введения а-фазы следует из того, что на межфазной границе, где молекулы взаимодействуют не только с молекулами своей фазы, но и с близлежащим слоем молекул другой фазы, свойства вещества и его реакция могут заметно отличаться от свойств этой же фазы на существенно больщих расстояниях от межфазной границы, но все еще малых по сравнению с размерами кристаллов. [c.73]

    В качестве второй системы рассматривались раствор и кристаллы щавелевой кислоты. Были проведены эксперименты в пределах температур 303—323 К, концентраций 13—21%, при различных массах кристаллов (0,2-7 мг) по растворению кристаллов щавелевой кислоты в трубе ячейки. Система уравнений, описывающая движение, растворение кристалла совместно с явлениями тепло- п массообмена, аналогична предыдущей. В [72] исследовалась данная система, в качестве движущей силы было принято пересыщение ii—с, (растворение идет в диффузионной области), была найдена зависимость Sh = /1 Re" для определения м- В настоящей работе в качестве движущей силы было взято соотнощение (1.238). Неизвестным параметром являлся коэффициент массоотдачи. В результате расчета системы для кристаллов различных размеров при различных условиях с учетом (1.238) была подтверждена зависимость (8Ь = Л Re ) ошибка в определении скорости растворения кристаллов по найденному соотношению снизилась на 7% по сравнению с ошибкой, определенной в [72]. [c.80]


Таблица 2.2. Сравнение теоретических и экспериментальных данных по средневзвешенным размерам кристаллов Таблица 2.2. <a href="/info/264869">Сравнение теоретических</a> и <a href="/info/304050">экспериментальных данных</a> по средневзвешенным размерам кристаллов
    Гидраты растут подобно кристаллам и образуют пробки в прорезях тарелок и вентилях, если кристаллики гидрата не уносятся потоком газа. Поэтому турбулентное течение газа в промышленных условиях способствует смещению условий образования гидратов по сравнению с равновесными условиями гидратообразования, определенными в лабораторных опытах. Углеводородные жидкости (например, конденсат) усиливают этот эффект благодаря смывающему действию. [c.216]

    Положение атомов примеси в кристалле может быть различным. В одних случаях такой атом (или ион) заменяет в одном из узлов решетки атом (или ион) основного вещества примеси замещения)-, в других — атомы (или ионы) примеси размещаются между,узлами решетки примеси внедрения). К примесям причисляют также атомы или ионы одного из элементов, содержащихся в данном соединении, при избыточном содержании их по сравнению со стехиометрическим составом. Следует заметить, что энергия, необходимая для отделения электрона от атомов примесей в кристалле (в среде с высокой диэлектрической постоянной), нередко бывает в десятки раз меньше, чем потенциал ионизации этих атомов в свободном состоянии. Для характеристики полупроводников пользуются также величиной Е — работой выхода электрона (см. 50). [c.147]

    Современная теория химической связи, теория строения молекул и кристаллов базируется на квантовой механике молекулы как й атомы, построены из ядер и электронов, и теория химической связи должна учитывать корпускулярно-волновой дуализм микрочастиц. До применения методов квантовой механики к химии не удавалось создать непротиворечивую теорию химической связи. Ее фундамент был заложен в 1927 г. Гейтлером и Лондоном. Выполнив на основе квантовой механики расчет свойств молекулы водорода, они показали, что природа химической связи электрическая, никаких особых сил химического взаимодействия помимо электрических не существует. Действующие в молекуле между ядрами и электронами гравитационные и магнитные силы пренебрежимо малы по сравнению с электрическими. [c.51]

    Межъядерные расстояния в молекулах можно оценить разными методами, в первую очередь сравнением в рядах сходственных соединений. Часто длину связи оценивают как сумму так называемых ковалентных радиусов атомов гдв = Ra + Rb. Так как изолированных атомов в молекуле не существует, естественно, что понятие атомных радиусов является чисто эмпирическим. Разделив пополам межъядерное расстояние в гомонуклеарных двухатомных молекулах I2, ВГа, I2 и других или в кристаллах элементов С, Si и др., определяют радиусы атомов С1, Вг, I, С, Si и др. В эти величины вводят эмпирические поправки, как, например, в Rh или Rp, для лучшего согласия с опытными значениями где. Так получена система ковалентных радиусов Полинга (табл. 8). Для соединений с заметной по- [c.104]

    Причиной укрупнения кристаллов является большая растворимость очень мелких кристаллов вещества в сравнении с растворимостью более крупных кристаллов его при прочих равных условиях. Например, опытным путем найдено, что растворимость мельчайших кристаллов BaS04 (диаметром 0,04 мк) при той же [c.103]

    По сравнению с ковалентной связью ван-дер-ваальсово взаимодействие очень слабое. Так, если энергия, необходимая для диссоциации молекулы lj на атомы, составляет 243 кДж/ оль, то энергия сублимации (возгонки) кристаллов С1< составляет 25 кДж/моль. [c.91]

    Таким образом, металлические кристаллы образуют элементы, у которых число валентных электронов мало по сравнению с числом 31нергетически близких валентных орбиталей. Вследствие этого хи-мичсс <ая связь в металлических кристаллах сильно делокализована. [c.116]

    При пропановой депарафинизации дистиллятных рафинатов из-з. образования мелкокристаллических парафинов скорость филь — трования, по сравнению с депарафинизацией, с полярными раство — ригелями ниже. Повысить эффективность этого процесса в данном случае можно добавлением некоторых присадок, способствующих образованию более крупных кристаллов. Благодаря низкой избирательности пропана процесс депарафинизации проходит с высоким ТГД (15-25 °С) и потому требует глубокого охлаждения, что ЯВЛ5 ется его основным Е1едостатком. [c.267]

    В табл, 5 приводятся свойства циклано-алкановых углеводородов, выделенных из стандартных топлив (см. табл. 2). По сравнению с ароматическими углеводородами циклано-алка-новые углеводороды обладают меньшей плотностью и меньтпей объемной теплотой сгорания, более высокими температурами застывания и кристалли-зации. Физико-химические свойства алкановых и циклановых углеводородов существенно различаются. [c.16]

    При изучении роли кристаллов платины с различной структурой в механизме процесса дегидроциклизации н-геисана на алюмоплатиновых катализаторах был сделан вывод [179], что в реальных условиях дегидроциклизации, когда процесс сопровождается крекингом и энергичным коксообразованием, скорость и направление циклизации н-гексана зависят от размера кристаллов Pt на носителе. Наиболее благоприятными для осуществления реакции на изученном образце -АЬОз являются кристаллы Pt размером 1,1 —1,4 нм и степенью дисперсности H/Pt 0,6—0,8. При сравнении результатов ароматизации н-гексана и гексена-1 на изученных алюмоплатиновых катализаторах предположили, что электронодефицитные частицы Pt прежде всего могут играть роль центров закоксовывания алюмоплатиновых катализаторов, на которых происходит крекинг ненасыщенных углеводородов, склонных к реакциям присоединения и расщепления. Вместе с тем полагают, что ароматизация н-гексана осуществляется путем непосредственного замыкания шестичленного цикла с одновремен- [c.253]

    Точка с, отвечающая температуре и составу раствора, который может находиться в равновесии с двумя кристаллическими фазами, называется перитектической. Она отличается от эвтектической тем, что оба вида кристаллов, равновесных с расплавом, обогащены одним и тем же компонентом по сравнению с этим расплавом (в данном случае компонентом aSiOg), тогда как в эвтектической точке расплав находится в равновесии с двумя кристаллическими фазами, одна из которых обогащена по сравнению с расплавом первым компонентом, а другая—вторым компонентом. [c.387]

    Рассмотрим подробнее процесс кристаллизации расплава. Пусть это будет расплав, содержащий 40% 5Ь и 60% РЬ (точка к иа рис. 147). При охлаждении этого расплава до 395 °С (точка /) из него начнут выпадать кристаллы. Это будут кристаллы избыточного по сравнению с эвтектикой компонента в данном случае — сурьмы. Теперь сплав стал двухфазным. На диаграмме состояния ему отвечают две точки точка / (расплав) и точка т. (кристаллы сурьмы). Кристаллизация некоторого количества сурьмы изменит состав расплава он станет беднее сурь.мой и, следовательно, богаче свинцом. Точка на диаграм.ме, отвечающая расплаву, сместится немного влево. Поскольку охлаждение продолжается, эта точка вновь дойдет до кривой — из расплава снова выпадет какое-то количество кристаллов сурьмы. Таким образом, по мере охлаждения и кристаллизации точка, отвечающая расплаву, двигается вниз и влево по кривой кристаллизации сурьмы, а точка, отвечающая кристаллам сурьмы — вниз по правой вертикальной оси. Когда расплав достигнет эвтектического состава, из него станут выпадать очень мелкие кристаллы обоих компонентов (эвтектика), пока не закристаллизуется все взятое количество вещества. Получившийся сплав будет представлять собою смесь эвтектики с кристаллами сурьмы. [c.546]

    Другие огнеупорные изделия обычно содержат некоторое количество стекловидного вещества, имеющего большее термическое расширение, чем кристаллы. При этом при повышении температуры термическое расширение быстро увеличивается. Среди алюмосиликатных изделий муллитовые и силлиманитовые имеют небольшое термическое расширение, однако более значительное по сравнению с изделиями с высоким (содержанием кремнезема, высокое особенно при температурах до 700 °С. [c.101]

    Применение карбамида в виде пульпы имеет ряд преимуществ по сравнению с применением его растворов. Так, скорость комплексообразования в этом случае гораздо выше, так как не ограничивается скоростью охлаждения системы. Этот способ не требует реакторов больших размеров. Одним из условий, обеспечивающих достаточную эффективность процесса, является интенсивное перемешивание пульпы и нефтяного сырья. Таким образом, оптимальная глубина комплексообразования при высокой скорости процесса во многом определяется агрегатным состоянием и расходом карбамида. При этом следует учитывать свойства карбамида, т. е. его активность, размеры кристаллов, наличие примесей. Карбамид в кристаллическом состоянии более активен, чем в микрокристаллическом. Активность карбамида повышается в результате его предварительной обработки, например, ацетоном. Карбамид, применяемый, в процессе депарафинизации, содержит ряд примесей (биурет, нитраты, хроматы, бензоаты и др.), оказывающих как положительное, так и отрицательное влияние на камплексообразование. [c.229]

    Уникальная, среди металлов кристаллическая решетка Ga, состоящая из атомных пар Ga >, обусловливает необычные свойства металлического галлия — мииимал-ьную температуру плавления в ряду металлов подгруппы IIIA, меньшую плотность кристаллов по сравнению с жидкостью, соответственно 5,9037 и 6,0947 г/см  [c.344]

    У <р . Аи/ДиЛ> 0 — пренебрежение энергией частиц, пересекаемых границей выделяемого микрообъема йУ, по сравнению с теми же величинами для частиц, целиком находяшихся в этом же микрообъеме йУ, пренебрежение флюктуационным переносом энергии пульсационного движения в фазах <рГ Ас1(гАи/ >, 0 — пренебрежение флюктуационным переносом компонента (гА [(г)- Д г1(/ )>г — пренебрежение флюктуациями скорости роста кристалла. [c.127]

    Дислокационная теория росаа кристаллов из растворов [59]. Модель предыдущего раздела основана на предположении о том, что полную скорость диффузии определяет поверхностная диффузия модель удовлетворительным образом описывает кинетику роста кристаллов из газовой фазы в случае, когда градиент концентрации в объемной фазе можно считать пренебрежимо малым по сравнению с разностью концентрации в непосредственной близости от кристалла и равновесной концентрации. В случае, когда градиент концентрации в объемной фазе велик, процессом, определяющим полную скорость диффузии, является объемная диффузия. Этот случай, как правило, приходится рассматривать при кристаллизации из растворов (или из газовой фазы в присутствии инертного газа) [60]. [c.272]

    Ковалентная связь часто встречается и в кристаллах соединений. Так, карборунд Si состоит из атомов углерода и кремния, 6бразуюш.их тетраэдрическую решетку и связанных между собой ковалентной или, точнее, слабо полярной связью (вследствие несколько большей электроотрицательности углерода по сравнению с кремнием). [c.132]

    Объясняется это тем, что внутреннее строение жидкостей значительно сложнее внутреннего строения газов и кристаллов. По сравнению с газами жидкости обладают прежде всего во мноГо раз большей плотностью. Расстояния между молекулами в жидкостях настолько малы, что свойства жидкости в значительной степени определяются собственным объемом молекул и взаимным притяжением между ними, в то время как в газах в обычных условиях влияние этих факторов незначительно. Прн малых расстояниях между молекулами имеют значение тякже их геометрическая фпрмя и по.пярныр гвойствя Свойства полярных жидкостей зависят не только от взаимодействия молекулы с молекулой, но и от взаимодействия между отдельными частями разных молекул. [c.161]

    Для неорганических веществ в кристаллическом состоянии возможности расчета температурной зависимости свойств на основе методов сравнения значительно более ограничены, чем для газов. Здесь сказывается прежде всего больщее многообразие особенностей внутреннего строения кристаллов по сравнению с газами и большее различие характера связи между частицами. Разность значений аналогичных величин для однотипных веществ в кристаллическом состоянии большей частью существенно зависит от температуры. В связи с этим метод разностей в общем случае не может быть рекомендован. Отношения аналогичных величин, вьь ражаемые уравнениями (111,26), (111,28) и другими для достаточно однотипных веществ, мало зависят от температуры. Но это относится преимущественно к высокотемпературным составляющим энтропии и энтальпии (и соответственно других функций), а не к значениям их, отсчитываемым от О К. [c.126]

    Для твердого водорода остаточная энтропия при О К обусловливается существованием двух его модификаций пара- и орто-водорода. В связи с этим твердый водород также можно рассматривать как раствор (орто- и пара-водорода), энтропия которого не падает до нуля при О К. Наличие остаточной энтропии у СО (NO, NoO) связано с различной ориентацией молекул СО в кристалле ОС —СО и СО — СО). Так как атомы С и О близки по своим размерам, то эти два вида ориентации в кристалле должны обладать практически одинаковой энергией. Отсюда статистический вес наинизшего энергетического уровня отдельной молекулы равен 2, а для моля кристалла —2Л . Поэтому остаточная энтропия СО должна быть величиной порядка Rln2 = 5,76 Дж/(моль К). Сравнение значений стандартной энтропии СО, вычисленных на основании калориметрических измерений [193,3 Дж/(моль К)] и спектроскопических данных [197,99 Дж/(моль К)], подтверждает этот вывод. Для твердых веществ, кристаллические решетки которых имеют какие-либо дефекты, 5(0) Ф 0. Значения остаточной энтропии у отдельных веществ, как правило, — небольшие величины по сравнению с S°(298). Поэтому, если пренебречь остаточной энтропией (т. е. принять условно 5(0) = 0), то это мало повлияет на точность термодинамических расчетов. Кроме того, если учесть, что при термодинамических расчетах оперируем изменением энтропии при протекании процесса, то эти ошибки в значениях энтропии могут взаимно погашаться. Почти каждый химический элемент представляет собой смесь изотопов. Смешение изотопов, как и образование твердых растворов, ведет к появлению остаточной энтропии. Остаточная энтропия связана с ядерными спинами. Если учесть, что при протекании обычных химических реакций не изменяется изотопный состав системы, а также спины ядер, то остаточными составляющими энтропии при вычислении изменения энтропии Д,5 можно пренебречь. [c.265]


Смотреть страницы где упоминается термин Сравнение кристаллов: [c.228]    [c.337]    [c.110]    [c.292]    [c.39]    [c.624]    [c.208]    [c.144]    [c.120]    [c.182]    [c.262]    [c.159]    [c.231]    [c.281]    [c.152]   
Смотреть главы в:

Физические методы анализа следов элементов -> Сравнение кристаллов




ПОИСК







© 2024 chem21.info Реклама на сайте