Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение воды в карбонильных соединениях

    Рассмотрим возможности кинетического способа на примере определения влажности карбонильных соединений. Анализируемый образец растворяют в подходящем растворителе и титруют реактивом Фишера визуально или электрометрически. После прекращения подачи реактива избыток иода вскоре исчезает. Через 1—2 мин реактив снова прибавляют до наступления конечной точки, и так продолжают титровать в течение 10—15 мин. По полученным результатам строят график в координатах расход реактива — время титрования . Излом на кривой соответствует моменту полного окончания реакции с водой, присутствующей в пробе. Дальнейший расход реактива объясняется выделением воды в побочном процессе. При большом избытке метанола и карбонильных соединений в пробе скорость выделения воды практически постоянна, поэтому экстраполяция на нулевое время значительно облегчается. Отрезок, отсекаемый на оси ординат, соответствует точному объему реактива Фишера, израсходованному на реакцию с водой в пробе (рис. 1.12). [c.73]


    ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ КАРБОНИЛЬНЫХ СОЕДИНЕНИИ В ФУЗЕЛЬНОЙ ВОДЕ ПОЛЯРОГРАФИЧЕСКИМ МЕТОДОМ [c.160]

    Нерастворимые в воде карбонильные соединения. Растворяют 1 г исследуемого карбонильного соединения в 10 жл этилового спирта и медленно приливают воду до появления мути. Муть устраняют, добавляя небольшое количество этилового спирта, прибавляют 1 г гидро.хло-рида семикарбазида, 1,5 г ацетата натрия и дальнейшее определение проводят, как описано для веществ, растворимых в воде. В том случае, [c.443]

    Для карбонилов прослеживается аналогия в соответствующих вертикальных триадах. Так, рутений и осмий, подобно железу, образуют пентакарбонилы Э(СО)5, представляющие собой летучие жидкости. Эти карбонилы легко образуют трехъядерные кластеры Эз(СО)12, которые термически более устойчивы. Среди карбонилов рутения известны и более сложные кластеры Ки4(СО)12, Кив(С0)18. Это твердые малорастворимые в воде, но легкорастворимые в неполярных органических растворителях вещества. В карбонильных соединениях родия и иридия имеется определенное сходство с кобальтом. Для них характерны кластерные карбонилы Эг(С0)8 — легкоплавкие кристаллические вещества, склонные к сублимации. С другой стороны, эти элементы, как и элементы первой диады платиноидов, образуют полиядерные твердые карбонилы Э4(СО)12 и Эа(С0)1в. Кроме того, для иридия известен полимер [1г(С0з)1 , чрезвычайно устойчивый по отношению к щелочам и кислотам. Для платины и палладия в отличие от никеля карбонильные производные малохарактерны, хотя и существуют. [c.424]

    Определению воды методом Фишера мешают вещества, которые при взаимодействии с одним из компонентов реагента образуют воду. Так, ири взаимодействии карбонильных соединений с метанолом [c.639]

    Методика определения. В колбу с притертой пробкой наливают 50 мл насыщенного при 0 С раствора 2,4-динитрофенилгидразина в 2 н НС1 и вносят (в ампуле) навеску карбонильного соединения порядка 0,05 г. Ампулу разбивают. Смесь оставляют в ледяной бане на 1 ч. Если карбонильное соединение легко летуче, нужно время от времени колбу сильно встряхивать. Образовавшийся осадок отфильтровывают во взвешенный стеклянный тигель для фильтрования или в тарированную стеклянную воронку. Осадок промывают 2 н. НС1, затем водой и высушивают в вакуум-эксикаторе или в термостате при 100° С Проводят два параллельных определения. [c.239]

    Вода быстрее реагирует с фенилизоцианатом, чем с первичными спиртами, и для вычисления поправок можно исходить из того, что 1 моль воды поглощает 1 моль изоцианата. Определениям этим методом мешают первичные и вторичные амины, поскольку скорости их реакций с фенилизоцианатом сравнимы со скоростями реакций спиртов. Третичные амины не мешают анализу, так же как и карбонильные соединения, карбоновые кислоты и ацетали. Большинство ароматических гидроксильных соединений не взаимодействуют с фенилизоцианатом. [c.26]


    Точность анализа модельных смесей сухого воздуха с парами ароматических углеводородов, карбонильных соединений и диэтиламина, приготовленных диффузионным методом, характеризуют данные табл. 4.4. Во всех случаях РК < 0,5, и концентрация примесей в растворе оказывается близкой к предельной еще до полного испарения жидкости. Анализ осуществлялся без определения объемов пропущенного газа и жидкости с расчетом по формуле (4.17), а для соединений с относительно небольшими значениями Р ц К (бензол в уксусной кислоте, ацетон, метилэтилкетон, и диэтиламин в воде) — [c.199]

    Эффект обогащения гомологами бензола иллюстрирует рис. 4.19, из которого видно, как резко возрастают пики л1-кснлола и толуола при равновесном концентрировании (рис. 4.19, а) по сравнению с полным улавливанием. на силикагеле и десорбцией уксусной кислотой (рис. 4.19,6). Отделение от сопутствующих веществ показано на примере улавливания в воду примесей карбонильных соединений (3—4 мг/м ) в присутствии десятикратного количества углеводородов. Для воды и воздуха К альдегидов и кетонов более чем на два порядка превышают К углеводородов. Поэтому уже на стадии отбора пробы карбонильные соединения почти полностью отделяются от мешающих их определению углеводородов. Так, на хроматограмме воды, насыщенной воздухом, содержащим примеси ароматических и алифатических углеводородов и кетонов (рис. 4.20), пики углеводородов практически отсутствуют, хотя концентрация этих соединений в газе на порядок превышала концентрацию кетонов. В то же время на хроматограмме элюата, содержащего примеси, адсорбированные из этого же газа в режиме полного улавливания, вообще невозможно произвести количественную оценку содержания кетонов в растворе, поскольку эти пики полностью закрыты пиками сопутствующих примесей углеводородов. [c.204]

    Метод определения карбонильных соединений, основанный на реакции с аминными комплексами серебра, лишен недостатков, связанных с нестойкостью реактива и нерастворимостью образцов он применим лишь для. растворимых в воде альдегидов. Серебряно-аминный реактив стоек в течение не менее двух недель для его приготовления можно использовать органические растворители. [c.99]

    Формальдегид и другие карбонильные соединения мешают определению воды, поэтому их предварительно необходимо перевести в какие-либо другие, не реагирующие с реактивом Фишера, продукты. Чаще всего для этой цели определение проводят в растворе пиридина, связывающего формальдегид в комплекс [c.127]

    Метод определения воды, основанный на использовании карбида кальция, применим к широкому кругу веществ, инертных по отношению к карбиду, оксиду и гидроксиду кальция. Следы спиртов в углеводородах не мешают определению, а присутствие сероводорода приводит к ошибочным результатам. Некоторые карбонильные соединения конденсируются в реакторе с отщеплением воды [171]. [c.300]

    Показана возможность и целесообразность применения полярографии для определения железа и марганца в сточных водах производства СЖК. Высказано предположение о возможности определения карбонильных соединений полярографическим методом. [c.275]

    Сведения о концентрации карбонильных соединений и ее изменениях в природных водах представляют интерес при решении ряда вопросов химии и биологии водоемов (процессы трансформации, в частности, био- и фотохимического окисления формы миграции элементов механизмы биологической конкуренции и др.). Такие сведения практически отсутствуют отчасти вследствие затруднений определения карбонильных соединений. [c.210]

    Эти затруднения обусловлены спецификой природных вод, ограничивающей вообще возможность применения в гидрохимических исследованиях обычных методов определения многих органических и неорганических веществ. Так, широко распространенная в органическом анализе чувствительная реакция конденсации карбонильных соединений с 2,4-динитрофенилгидразином в ее классическом выполнении [1] к определению в природных водах с их широкими вариациями химического состава неприменима. Возможно, этим объясняются отдельные неудачные попытки определения карбонильных соединений в некоторых водоемах [2] [c.210]

    Метод использовали для определения карбонильных соединений в природных водах (см. таблицу). Погрешность метода составляет 0,05 мкг-экв карбонильных веш еств в 20 мл воды. [c.214]

    Растворенные в воде газы и летучие органические вещества (легкие бензины, некоторые органические сернистые соединения, низкомолекулярные эфиры, низкомолекулярные карбонильные соединения и др.) устраняются аэрированием воды или обработкой ее определенными химическими реагентами. Для удаления сероводорода воду обрабатывают хлором, для связывания избыточной углекислоты — известковым раствором, мелом или фильтруют через мраморную крошку, избыточный кислород устраняется при фильтровании через железную стружку, обработкой сернистокислым натрием или другими реагентами. Растворенные в воде одноатомные и многоатомные фенолы, некоторые продукты органического синтеза, гуминовые и фульвокислоты разрушаются под действием сильных окислителей. [c.76]


    Удачное решение для метода вычитания было предложено в работе [12]. Реакции проводили в системе, содержащей две фазы воду и тетрахлорид углерода. Анализируемую смесь, представляющую собой водный раствор органических соединений, использовали как одну из двух фаз (водную). После добавления к ней тетрахлорида углерода и, следовательно, образования двухфазной системы жидкость — жидкость, для уско,рения установления равновесия систему встряхивали и после расслоения анализировали газохроматографическим методом тетрахлорид углерода с экстрагированными соединениями. Обработка гидросульфитом привела к исчезновению пиков карбонильных - соединений или к их существенному уменьшению. Таким образом, этот метод может быть рекомендован для качественного, а в ряде случаев и количественного определения карбонильных соединений. В этой же работе описан метод вычитания сернистых соединений (меркаптанов) при использовании хлорида ртути как реагента. [c.144]

    Следовательно, при применении этого метода накладываются определенные ограничения но выбору жидкости-концентратора, а так как эта жидкость вводится в хроматографическую систему, то ее выбор должен учитывать и ее хроматографическое поведение (время выхода, наличие примесей и т. д.). Авторы этого метода при использовании уксусной кислоты для улавливания ароматических углеводородов и воды для улавливания карбонильных соединений определили содержание этих веществ в воздухе 10 — —10 % [10]. Подробный обзор литературы по описанным методам определения примесей появился недавно в литературе [1]. [c.100]

Таблица 1.9 Определение содержания воды в карбонильных соединениях реактивом Фишера с учетом кинетики побочной реакции Таблица 1.9 <a href="/info/194201">Определение содержания воды</a> в <a href="/info/1049">карбонильных соединениях</a> реактивом Фишера с <a href="/info/828980">учетом кинетики</a> побочной реакции
    Для определения карбонильных соединений применялся реактив Жирара [14, 43, 44] —образование гидразонов. Аналогичные реакции проводили с использованием гидразина, например, в работах [26, 34, 45—51]. Следует отметить, что если в работе [45] использование гидразина для определения алифатических карбонильных соединений было неудачным (в отличие от определения сахаров [46]) из-за применения слишком кислого фонового электролита, то в работах [34, 47] гидразин был успешно применен для определения карбонильных соединений в промывных водах производства изопрена [34] и определения ацетона в винилацетате [47]. Это достигалось благодаря использованию фонового электролита с pH близким к нейтральному. Применение гидразина для определения карбонильных соединений было развито в работах [26, 48—51], в том числе выполнено раздельное определение ряда алифатических альдегидов и кетонов в производствах мономеров для синтетического каучука [26, 48], проведено определение формальдегида в эфирах целлюлозы [49, 50], а также разработана высокочувствительная методика определения ацетальдегида в товарном этаноле без предварительного концентрирования (отгонка) ацетальдегида [c.306]

    Многие описанные методы определения содержания карбонильных соединений с помощью гидроксиламина основаны, главным образом, на определении содержания непрореагировавщего гидроксиламина, выделивщейся хлористоводородной кислоты или воды  [c.258]

    Ацетали, эфиры и углеводороды являются устойчивыми, и к ним можно применить общие методы анализа. Хотя ацетали и поглощают воду в присутствии сильных кислот с образованием свободных карбонильных соединений, все же вследствие большой скорости взаимодействия с водой обычно применяемых реактивов возможные ошибки, возникающие по этой причине, невелики. В дополнение к методу Фишера обычно для определения воды в соединениях этого типа применяют перегонку, а также методы, основанные на реакции воды с гидридом кальция, карбидом кальция, нитридом магния и на реакции гидролиза ангидридов кислот или хлористых ацилов. (Эти методы были рассмотрены в гл. I.) Реакция с гидридом кальция была применена Фишером [1] для проверки точности и воспроизводимости результатов анализа [c.121]

    Весовое определение с использованием 2,4-динитрофенилгидразина [20]. Спиртовый раствор нерастворимого в воде карбонильного соединения прибавляют по каплям к насыщенному раствору 2,4-динитрофенилгидразина в 2 н. соляной кислоте. Реактив берут в избытке 50—100%. Раствор разбавляют 2 н. соляной кислотой и выдерживают от 2 до 24 ч при комнатной температуре. Осадок отфильтровывают, промывают 2 н. соляной кислотой и затем водой до отсутствия ионов хлора и сушат при 105 °С. Для ацетофенона, п-гидроксибензальдегида, циклогексанона и цикло-пентанона превращение идет на 98—100 % В случае водорастворимых карбонильных соединений реакционную смесь выдерживают во льду в течение 1 ч и лишь после этого отфильтровывают гидразон. [c.117]

    ФЕНИЛГИДРАЗИН С НвЫНЫНз — маслянистая жидкость с неприятным запахом, т. кип. 243,5° С малорастворим в воде, хорошо — во многих органических растворителях. При нагревании выше 300 С Ф. разлагается с образованием С,Не, СвН ЫНг, N2 и NHз. Легко реагирует с веществами, содержащими карбонильную группу, образуя фенил-гидразоны. Последние используют для идентификации альдегидов и кетонов. Ф. применяют для синтеза красителей, лекарственных препаратов (амидопирина, антипирина и др.), в виде производных для качественного и количественного определения карбонильных соединений. Ф.— ядовит, вызывает экзему. [c.260]

    Реакцию следует проводить при полном отсутствии воды и в определенны случаях в атмосфере инертного газа. Целесообразно применять на 1 моль карбонильного соединения 1,6 моль эфира хлоркислоты и 1,6 моль алкоголят [2S6J. Начальная температура реакции должна быть низкой (до —80° С) [287], а для завершения процесса реакционную массу короткое время иагрбваю-с на водяной бане. Реакционную смесь обрабатывают разбавленной соляной кислотой и i фракционируют в вакууме. [c.753]

    К, амальгамированному цинку добавляют альдегид или кетон и соляную кислоту (разбавленную в отношении 1 1) и кипятят в колбе с обратным холодильником в течение несколькоих часов или даже нескольких десятков часов. Если карбонильное соединение нерастворимо в воде, к смеси добавляют небольшое количество ледяной уксусной кислоты или спирта. Продолжительность реакции сильно сказывается на выходе продукта реакции, так как восстановительная способность амальгамированного цинка уменьшается по,мере его действия. При нагревании смеси происходит бурное выделение водорода, который сильно перемешивает смесь. Через определенные промежутки времени добавляют следующие порции концентрированной соляной кислоты. В связи с большими потерями водорода применяют более чем 50%-ный избыток цинка, чистота которого не играет большой роли (при применении чистого и технического цинка были получены одинаковые результаты). [c.500]

    Для определения воды в карбонильных соединениях и сильных кислотах при электрометрическом определении конечной точки можно использовать реактив К. Фишера видоизмененного состава, содержащий вместо метилового спирта N,N-димeтилфopмaмид. Готовят и применяют реактив в соответствии с ГОСТлм 14870-77. [c.179]

    Равновесное концентрирование в чистых летучих жидкостях впервые было использовано [8] для определения микропримесей ароматических углеводородов и карбонильных соединений в воздухе. Подходящим поглотителем ароматических углеводородов оказалась уксусная кислота, а карбонильных соединений — вода. [c.199]

    Большинство неорганических оснований и алифатических аминов мешают количественному определению карбонильных соединений по этому методу, однако они могут быть учтены введением поправок. Кислоты с константами диссоциации больше 1 X 10 мешают определению. Большинство органических кислот заметно не влияют на определение. Наличие больших количеств воды (больше 20%) в реакционной смеси оказывает отрицательное влияние на определение, особенно в присутствии ацеталей и простых виниловых эфиров. [c.93]

    Предполагается, что подобный хиноидный ион образуется в растворе, получающемся при добавлении щелочи к фенилгидразону ароматического нитроальдегида [85], Эта цветная реакция явилась основой чрезвычайно чувствительного метода анализа кетостерои-дов в биологических вытяжках [86]. Ниже описано применение этого метода для количественного определения следов альдегидов или кетонов в воде и органических растворителях. Метод наиболее удобен для анализа карбонильных соединений в интервале концентраций от до 10 моль/л, при котором другие методы не дают удовлетворительных результатов или неприменимы. [c.122]

    Кислоты, большинство амидов и нитрилы не мешают определению сложных эфиров описанным колориметрическим методом. Условия гидроксиламинолиза недостаточно жестки и реакция с амидами и нитрилами в этих условиях не протекает. Наоборот, хлорангидриды активно участвуют в обоих реакциях. Карбонильные соединения в высоких концентрациях также реагируют с гидроксиламином. Переходные металлы, например медь, никель и ванадий, реагируют с гидроксамовыми кислотами, образуя окрашенные комплексы, которые мешают определению. Возможно, что ванадий вообще успешно может заменить железо в этом определении [6]. Ионы, комплексно связывающие Ре +, например хлорид, тартрат, ацетат, а также вода могут оказывать значительное влияние на интенсивность окраски при определении как сложных эфиров, так и ангидридов. [c.148]

    Определение карбонильных соединений в питьевой воде методом дериватизационной высокоэффективной жидкостной хроматографии [c.540]

    Ku herov реакция Кучерова (каталитическое присоединение воды по тройной связи ацетиленов с образованием карбонильных соединений) Kuhn-Roth реакция Куна—Рота (метод определения метильных групп у атома углерода в виде уксусной кислоты реакцией органического соединения с хромовой и серной кислотами) [c.427]

    А. Д. СЕМЕНОВ, Т. С. КИШКИНОВА СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ В ПРИРОДНЫХ ВОДАХ [c.210]

    Определение карбонильных соединений в водах Отказненского водохранилища с добавками известных количеств альдегидов [c.214]

    А. Д. Семенов, Т. С. Кишкинова. Спектрофотометрическое определение карбонильных соединений в природных водах...... 210 [c.335]

    Спектрофотометрическое определение карбонильных соединений в природных водах. Семенов А. Д., Кишкинова Т.С. Физические и физико-химические методы анализа органических соединений (Проблемы аналитической химии, т. I). М., Наука , 1970, стр. 210—214. [c.346]

    Предпламенный топливный конденсат был исследован на содержание непредельных соединений бромид-броматным методом на приборе БЧ-2. Кроме того, количественно определяли гидроперекиси станнометрическим методом, кислоты — титрованием щелочью, карбонильные соединения — спектрофотометрическим методом и активный водород, дающий возможность определения спиртов и воды. [c.120]

    В том случае, когда в анализируемой воде содержатся формальдегид, ацета ьдегид, пропионовый и масляный альдегиды <лли соответствующие им кетоны) применярт водный раствор гидроксил-амина. тя определения карбонильных соединений с более высоким молекулярным весом, как фурфурол, гексиловый льдегид и другие, используют спиртовый раствор гидроксиламина. [c.496]

    Эксперименты проводились при 90°С в стеклянной колонке с загрузкой углеводорода 450 г скорость подачи воздуха 5 л/ч. Через определенные промежутки времени отбирались пробы, в которых определялось содержание побочных продуктов. Качественно в продуктах окисления 1,Ьдифекилэтана кроме гидроперекиси были обнаружены фенол, бензойная и муравьиная кислоты, бензофенон, ацетофенон, метилдифенилкарбинол, перекись водорода, вода, а также двуокись углерода. Фенол определяли бромид-броматиым методом кислоты — титрованием по фенолфталеину, карбонильные соединения — с помощью гидроксиламина , метилдифенилкарбинол — методом гидрохлорирования , содержание двуокиси углерода в отходящих газах — на аппарате ВТИ-2. [c.365]


Смотреть страницы где упоминается термин Определение воды в карбонильных соединениях: [c.154]    [c.30]    [c.60]    [c.511]    [c.593]   
Смотреть главы в:

Акваметрия -> Определение воды в карбонильных соединениях

Акваметрия -> Определение воды в карбонильных соединениях

Акваметрия -> Определение воды в карбонильных соединениях




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Карбонильные соединения определение

Соединение определение



© 2024 chem21.info Реклама на сайте