Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характерные реакции карбонат-иона

    Качественной реакцией на карбонат-ионы СО3— и гидрокарбонат-ионы НСОГ являются их взаимодействие с более сильными кислотами при этом выделяется углекислый газ с характерным шипением. От углекислого газа известковая вода мутнеет  [c.350]

    Качественной реакцией на карбонат-ион СОз и гидрокарбонат-ион НСО 3 является их взаимодействие с более сильными кислотами. Выделение с характерным вскипанием оксида углерода (IV) указывает на наличие этих ионов. [c.243]


    Характерные реакции карбонат-иона [c.180]

    Окисление перекисью водорода может происходить при более низких pH (около 5—6), но во время окисления надо добавлять аммиак или карбонат для связывания образующейся при реакции кислоты [814]. В качественном анализе широко пользуются этой реакцией, проводя ее в щелочной среде появление желтого окрашивания Се(IV) служит характерной реакцией на церий. Окисление кислородом или перекисью водорода имеет то преимущество, что ни в раствор, ни в осадок не вводятся никакие посторонние ионы. [c.318]

    Катионы 2-й аналитической группы расположены во П группе Периодической системы. Барий и кальций являются типичными металлами, легко окисляющимися на воздухе и реагирующими с водой при комнатной температуре. Гидроокиси их хорошо растворимы в воде. Растворы гидроокисей являются сильными электролитами. В отличие от ионов К+, N3+ и аммония и подобно иону Mg2+ катионы 2-й группы образуют ряд малорастворимых солей карбонаты, фосфаты, оксалаты, отчасти сульфаты и хроматы и некоторые другие. Так же как и для катионов 1-й аналитической группы, для ионов Ва + и Са -ь окис-лительно-восстановительные свойства не характерны. Поэтому для их разделения и обнаружения применяются исключительно реакции осаждения. [c.65]

    Обнаружение СОз по выделению СО2. При действии на исследуемый раствор разбавленной минеральной или уксусной кислотой выделяющийся без цвета и запаха газ служит единственным признаком, по которому обнаруживают карбонат-ион. Других характерных реакций карбонат-иона нет. Открытию СОз мешают ионы NO2, S , SOl и ЗгОз , которые при действии на них минеральной кислотой выделяют газы. Однако количество мешающих анионов значительно можно сократить, если действовать уксусной кислотой. Так, при действии уксусной кислоты (/(=1,74-10- ) на тиосульфат реакция образования тиосерной кислоты (/(2= 1,9-10- ) протекает только при повышенной температуре, при комнат- [c.268]

    Если реакции обнаружения иона проводят в растворе его чистой соли, то их называют индивидуальными реакциями. Число обычно изучаемых индивидуальных реакций колеблется от 3 до 12. В свою очередь, индивидуальные реакции делят на общие и характерные. К общим реакциям относят те, в которых участвуют реактивы, взаимодействующие со многими ионами. Например, реакции взаимодействия со щелочами, растворами аммиака, растворимыми карбонатами, сульфидами, фосфатами. К характерным реакциям относят те, в которых участвуют реактивы, взаимодействующие с небольшим числом ионов или даже с одним ионом. Например, характерной реакцией Са -иона [c.60]


    Укажите характерные реакции на карбонат- и нитрат-ионы. Напишите уравнения соответствующих реакций. [c.42]

    Скорость реакции в присутствии катализатора составляет k [СО2] [ at], причем — константа, характерная для данного катализатора и зависящая от температуры, а [ at] — концентрация каталитической добавки. Реакция имеет, таким образом, первый порядок. В присутствии иона или молекулы, которая будет реагировать с ионом водорода, образующимся по реакции (Х,2), катализированная гидратация будет продолжаться вплоть до достижения равновесия. Так, в присутствии ионов карбоната (и при условии незначительного равновесного давления СОа над раствором) вслед за реакцией [c.243]

    Большинство соединений щелочных металлов относится к ионному типу. Однозарядные положительные ионы этих металлов имеют на наружном уровне 8 электронов (тип 8е ), кроме иона лития, у которого лишь два электрона (тип 2е ). Эти ионы имеют сравнительно большие радиусы, увеличивающиеся отлития к францию (см. табл. 2), обладают малым поляризующим действием и незначительной собственной поляризуемостью. Соединения, как правило, бесцветны, термически очень устойчивы и хорошо растворимы в воде у лития в связи с иным типом иона некоторые соединения (гидроксид, фторид, карбонат, фосфат и др.) плохо растворимы в воде. Ионы щелочных металлов практически не обладают окислительными свойствами при химических реакциях их можно восстановить с помощью электрического тока (на катоде). Для ионов типа 8е не характерно образование комплексных соединений (исключение составляет ион лития, имеющий тип 2е , малый радиус, по сравнению с ионами остальных щелочных металлов, но наибольшее поляризующее действие). [c.37]

    Помутнение известковой воды — характерная реакция на углекислый газ. Все карбонаты и гидрокарбонаты разлагаются при действии сильных кислот с образованием углекислого газа это характерная реакция на ионы СОГиНСО . [c.77]

    Биологическое значение концентрации ионов водорода распространяется и на растительные организмы каждый вид наземных растений для своего наиболее успешного развития требует наличия в почве определенной концентрации водородных ионов. Например, картофель лучше всего растет на слегка кислых почвах (pH = 5), люцерна на слегка щелочных (pH = 8), а пшеница на нейтральных (pH = 7). Значения pH отдельных почв колеблются от 3 до 9, но для большинства лежат в пределах 5—7, т. е. почвы имеют, как правило, слегка кислый характер. Напротив, для поверхностных вод океана характерна слегка щелочная реакция pH поддерживается в них (за счет гидролиза карбонатов) на приблизительно постоянном уровне 8,1—8,3. [c.200]

    Угольная кислота как двухосновная образует средние соли — карбонаты и кислые соли — бикарбонаты. Характерной реакцией на карбонат-ионы является действие на них кислот, образующаяся при этом Н2СО3 частично разлагается (по реакции 5), и выделяется углекислый газ — эта реакция является качественной реакцией на карбонат-ион  [c.312]

    Термическое разложение карбонатов. Большинство карбонатов металлов разлагается при Нагревании с выделением диоксида углерода. Температуры разложения и количество поглощаемого при разложении тепла приведены в табл. 4.27. Поглощаемое количество тепла для соЛей двухзарядных ионов меньше, чем для солей однозарядных ионов, и первые разлагаются при более низких температурах. Соли ионов с 18-электронной конфигурацией разлагаются значительно легче, чем соли ионов с конфигурацией электронов типа благородного газа. Характерно, что температуры разложения меняются симбатно с количеством поглощаемого тепла. Реакцию разложения можно записать следующим уравнением  [c.207]

    Кинетическая модель. В водном растворе горячего поташа СОг взаимодействует с ионами ОН и молекулой НгО по обратимым реакциям (6.13) и (6.15). Ионы ОН" образуются при мгновенном гидролизе карбоната калия по реакции (6.14). Кинетические и термодинамические данные приведены в [27], однако необходимо учитывать, что при температуре выше 70—80°С и значительных ионных силах (/>2,5 кг-ион/м ), характерных для процесса, константы скорости равновесия следует рассматривать как приближенные. [c.189]

    Таким образом, скорость реакции в целом зависит от скорости образования твердой фазы. В определенных условиях, особенно для реакции образования карбоната кальция, выделение твердой фазы затруднено. Это обусловливает пересыщение раствора, которое характеризуется повышенным содержанием (по сравнению с равновесным) удаляемых ионов в растворе, превышающем растворимость в данных условиях. Явление пересыщения особенно характерно для растворов карбоната кальция. [c.62]

    Качественной реакцией на карбонат-ионы СО и гидрокарбонат-ионы НСОз является их взаимодействие с более сильными кислотами при этом с характерным шипением выделяется диоксид углерода. Проходя через известковую воду, диоксид углерода вызывает ее помутнение [c.375]


    Для оборотных систем о.хлаждения с градирнями и брызгальными бассейнами характерно образование минеральных отложений, состоящих в основном из карбоната кальция. В числе примесей в отложениях обычно присутствуют кремниевая кислота, окислы железа и алюминия, органические вещества. Как правило, оборотные системы первоначально заполняются природной водой из имеющегося источника водоснабжения. Со временем качество воды в системе претерпевает изменения. Так, прохождение воды через градирню и ее охлаждение за счет испарения сопровождаются десорбцией свободной углекислоты и повышением концентраций малолетучих примесей. В результате упаривания увеличивается общее солесодержание воды, возрастает концентрация ионов кальция. Уменьшение концентрации свободной СОг в воде вызывает сдвиг реакций гидролиза и диссоциации ионов НСО [см. уравнения (7.2) и (7.3)] в направлении слева направо, при этом вода обогащается ионами СОз . Многократная циркуляция в системе препятствует установлению в воде углекислотного [c.247]

    Очень устойчиво ионное состояние элементов группы ПА— щелочноземельных металлов и магния (бериллий обладает уже менее резкими металлическими свойствами). Однако катиону щелочноземельных металлов образуют с многозарядными анионами прочные ионные кристаллические решетки и соответствующие осадки в водной среде. Из названных общих реактивов такие осадки дают карбонаты, фосфаты и сульфаты (кроме магния). Для элементов группы ПА также мало характерно комплексо-образование (за исключением бериллия) и участие в окисли-тельно-восстановительных реакциях. Элементы группы ПА (без бериллия) образуют вторую аналитическую группу катионов, отличающуюся растворимостью в воде сульфидов и нерастворимостью карбонатов. Магний, в зависимости от создаваемых условий анализа, может попадать во вторую или первую группу. Магний не осаждается карбонатом аммония в присутствии аммонийных солей и попадает при этих условиях в первую аналитическую группу. [c.63]

    Смесь вещества прокаливают с безводным карбонатом натрия и после охлаждения растворяют в воде. Подкисляют азотной кислотой и с полученным раствором проводят реакции подлинности, характерные для ионов галогенов. [c.96]

    Все карбонаты и бикарбонаты разлагаются при действии сильных кислот с образованием углекислого газа это — характерная реакция на ион СОз и НСОз . [c.71]

    Испытывают часть раствора групповыми реагентами и устанавливают, к какой группе относится катион, имеющийся в задаче. Сначала определяют первую группу катионов, для этого к 1 мл раствора добавляют 2—3 капли раствора гидрофосфата или карбоната натрия (Na2HP04 или НагСОз) если при этом никакого осадка не выпадает, ti в нем могут присутствовать только катионы первой групп (Na+, К+, NH ) и анионы мыщьяка (AsO или AsO -)j В этом случае в отдельных порциях раствора определяю указанные ионы характерными реакциями. [c.88]

    В качестве примера анализа систематическим методом рассмотрим обнаружение ионов Na+ сероводородным методом, в котором групповыми реагентами являются газообразный сероводород и сульфиды (ЫН4)г5 и (НН4)25 . к испытуемому раствору добавляют кислоту и пропускают сероводород. При этом осаждаются катионы четвертой и пятой групп в виде соответствующих сульфидов. Полученный осадок отфильтровывают. К фильтрату добавляют водный раствор аммиака до щелочной реакции и (ЫН4)25. В осадок переходят катионы третьей группы в вцде сульфидов и гидроксидов. Осадок отфильтровывают. К фильтрату добавляют кислоту до кислой реакции по лакмусу и кипятят до исчезновения запаха НгЗ. К раствору добавляют водный раствор аммиака до щелочной реакции и (ЫН4)2СОз. В осадок выпадают катионы второй группы в виде карбонатов. Ион Mg2+ в присутствии большого избытка аммонийных солей остается в растворе. Осадок отфильтровывают. В фильтрате остаются катионы Ыа+, К+, НН и Mg2+. В полученном растворе обнаруживают ион Ма+ одной из его характерных реакций, например с помощью цинкур-анилацетата. [c.8]

    В расплавленных солях может протекать также известная кислотно-основная реакция превращения бихромат-иона в хромат-ион Бихромат калия растворяется в расплавленном NaNOg, придавая ему окраску, характерную для бихромат-иона. При добавлении к этому раствору небольшого количества твердого карбоната натрия в нем проходит кислотно-основная реакция с выделением из раствора Og, причем раствор приобретает окраску, характерную для хромат-иона  [c.364]

    Ниггли исследовал также и равновесия между щелочными карбонатными расплавами и щелочными алюмосиликатами, В системе окись калия — глинозем — кремнекислота — двуокись углерода наблюдал калиофилит, синтезированный до него Горгеу, Вейбергом и другими исследователями путем плавления каолина с карбонатом, хлоридом, фторидом калия и т. п., а также гидротермальным путем (см. С. I, 144 и ниже). Во всех известных щелочных алюмосиликатах, таких, как калиофилит, лейцит, ортоклаз, нефелин, альбит и т. п., молекулярное отношение окислов щелочей к глинозему довольно строго равно 1 1, в то время как кремнекислота связана в переменных молекулярных количествах, аналогично различному содержанию кристаллизационной воды в солевых гидратах (см. С. I, 87). То же справедливо и в отношении щелочных слюд, минералов группы содалит — канкринит, анальцима и цеолитов, что подчеркивал В. И. Вернадский Для магматической дифференциации особенно характерны изменения степени кислотности минералов (по кремнекислоте). Роль щелочных карбонатов, использованных Ниггли в своих экспериментах, играют в природе хлориды, сульфаты, гидроокислы и главным образом вода. Теория гравитационной кристаллизационной дифференциации может иллюстрировать явления миграции и смещений равновесия в соответствии с условиями температуры, давления и концентрации в магматических расплавах. Так могут быть объяснены весьма многочисленные минеральные ассоциации в горных породах, хотя в особых случаях, как это подчеркивал Феннер столь же важными могут быть, конечно, реакции ассимиляции. Сюда относятся также процессы контаминации магмы и гидротермальных растворов, изучавшиеся Бартом эти процессы происходят при взаимодействии восходящей мобильной фазы с осадочным материалом. Согласно Барту,. концентрация водородных ионов служит главным критерием в суждении о действительном масштабе подобных реакций. [c.584]

    Избирательный, или селективный, реактив дает сходные реакции с несколькими различными ионами. Например, избирательным реактивом является перекись водорода Н2О2, которая образует растворимые окрашенные соединения с ионами ряда металлов (титана, ванадия, молибдена и др.), каждое из которых имеет характерную окраску. Различные избирательные реактивы отличаются друг от друга широкой или более узкой избирательной способностью например, карбонат натрия осаждает катионы многих металлов, а диметилглиоксим осаждает только катионы никеля, меди и палладия. [c.137]

    Степень, до которой можно концентрировать кислоту в водном растворе, изменяется в широких пределах. Растворы борной кислоты и ряда других кислот (см. табл. 15) могут быть сконцентрированы до тех пор, пока вся вода не будет удалена и не останется твердая кислота. Если, с другой стороны, концентрировать посредством выпаривания растворы серной или азотной кислоты, то концентрация будет возрастать до определенной величины (которая для данной кислоты зависит от давления над раствором), после чего она остается постоянной (постоянно кипящая смесь). Чистые кислоты могут быть получены посредством замораживания таких растворов или путем добавления определенного количества 50д или N,0. соответственно (по расчету). Однако эти кислоты при обычных условиях неустойчивы. Например, 100-проц. серная кислота теряет 50д до тех пор, пока не достигнет концентрации 98,3 /о (постоянно кипящая смесь), и этот раствор затем поглощает воду до тех пор, пока давление над раствором не сравняется с упругостью паров воды в окружающей атмосфере. Поведение угольной кислоты является характерным для многих нестабильных кислот. Вода прп 15°С растворяет только приблизительно равный объем двуокиси углерода, причем раствори- ю ть быстро уменьшается с повышением температуры. Поэтому в. кислом растворе можно получить очень малую концентрацию ионов СОз (или НСО ), поскольку реакция СОз -Д-Н — СО - — -(-ОН- или НСО —>-С02- -0Н протекает очень быстро. Ко> карбонаты щелочных металлов хорошо растворяются в воде например, карбонат калия растворяется в равном весе воды. В таких растворах происходит некоторый гидролиз (СОз - -Н+—> НСО "), пр)шодящий к образованию избытка ионов ОН однако, если раствор не кипятить, то выделение СО не происходит. Таким образом, в щелочных растворах можно значительно увеличить концентрацию ионов СОз или НСО , и, следовательно, нестабильность раствора угольной кислоты не означает, что эти ионы нестабильны в водном растворе. Тиосульфатный ион 5,Оз , повидимому, даже менее стабилен при отсутствии ионов металла, и существование тиосерной кислоты в водном растворе вообще является сомнительным. [c.275]

    Таким образом, пирон, по Колли, являясь внутренней солью, имеет в молекуле одновременно положительный и отрицательный заряды, т. е. является биполярным ионом, своего рода бетаином . В этой оксониево-бетаинной формуле нет ни карбонильной группы, ни олефиновой двойной связи. Формула объясняет, таким образом, почему у-пироны не дают реакций, характерных для двойной связи и карбонильной группы. Атом кислорода не просто является звеном в цикле, соединяющем два углеродных атома одной из своих неподеленных электронных пар он принимает участие в создании бензог идной системы кольца. Правильность таких представлений можно легко проверить опытным путем на соответствующих соединениях. Так, по данным Байера, при метилировании у-пирона йодистым метилом получается метиловый эфир, который действием карбоната аммония может быть превращен в соответствующее производное пиридина. Те же отношения, что и для у-пиронов, наблюдаются у циклических соединений, содержащих вместо атома кислорода атом серы, например для так называемых 1-тио-у-пиронов. В этих тиопиронах окислением можно закрепить одну или обе неподеленные электронные пары атома серы [14, 15]  [c.206]

    Бром можно также обнаружить с помощью следующей простой реакции. Каплю раствора остатка, полученного после разложения образца по методу Лассеня или при сплавлении с карбонатом магния и калия, помещают на предметное стекло микроскопа, добавляют к ней каплю концентрированного раствора аммиака и рядом помещают каплю 0,1 н. раствора нитрата серебра. Эти две капли смешивают тонкой стеклянной палочкой и дают аммиаку испариться. В присутствии бромид-ионов образуются гексагональные и тригональные кристаллы бромида серебра, имеющие голубовато-серую окраску. Характерный вид имеют также кристаллы 2,4,6-трибромфенилендиа-мииа. Они образуются при взаимодействии брома с сульфатом w-фенилендиамина. На предметное стекло микроскопа наносят каплю исследуемого раствора, подкисленного каплей ЗМ раствора серной кислоты. После этого на предметном стекле при помощи смазки закрепляют стеклянное кольцо, так чтобы капля [c.55]


Смотреть страницы где упоминается термин Характерные реакции карбонат-иона: [c.184]    [c.160]    [c.157]    [c.54]    [c.184]    [c.154]    [c.228]    [c.122]   
Смотреть главы в:

Аналитическая химия -> Характерные реакции карбонат-иона




ПОИСК





Смотрите так же термины и статьи:

Карбонат-ион, реакции

Реакции карбонат-иона

Реакция карбонат-ионов

Характерные реакции на ионы



© 2025 chem21.info Реклама на сайте