Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движения внутри клеток

    Область применимости уравнения (8.18) ограничена плотностями,, существенно превышающими критическую плотность, поскольку при выводе формулы (8.17) было сделано предположение, что каждая молекула жидкости совершает колебательные движения внутри клетки , образованной ближайшими соседями этой молекулы. [c.239]

    У нас нет необходимости вдаваться во все детали. В общих чертах, прокариоты проще, у них отсутствуют специальные молекулы, которые позволяют более совершенным эукариотам осуществлять сложные процессы. Эти процессы позволяют эукариотам нести намного больше генетической информации (разрешая иметь набор хромосом вместо лишь одного отрезка ДНК), жить в других организмах и перемещать молекулы повсюду внутри самих себя с определенной целью. Если есть одно свойство, которое ставит эукариот выше прокариот, так это молекулярный аппарат для генерации и управления движением внутри клетки. Именно он привел к образованию мышц, весьма важных для животных, и допускает сложный танец хромосом, который мы наблюдаем в виде Митоза. [c.101]


    Движение снаружи ко внутренним областям клетки может происходить тремя путями. Во время фагоцитоза клетка охватывает объект распластывающейся вокруг него мембраной [159]. Такое обволакивание объекта протекает обычно с участием микрофиламентов. Когда мембрана полностью охватит фагоцитируемую частицу, происходит слияние ее краев. Процесс фагоцитоза чувствителен к цитохалазину. При пиноцитозе образуются пузырьки диаметром 200—700 нм, в которые захватывается внеклеточная среда. Интенсивность пиноцитоза зависит от типа клетки. Пиноцитоз обеспечивает поступление питательных веществ и сигнальных молекул внутрь клетки. Как и фагоцитоз, он чувствителен к цитохалазинам [171]. Третий тип интернализации мы будет называть эндоцитозом. Это название использовалось нередко для всех трех типов движения внутрь клетки, но в на- [c.93]

    Анабиоз имеет место и при замораживании клеток, когда свободная вода внутри клетки превращается в лед, И в этом случае физиологические процессы максимально замедляются или даже прекращаются, так как биохимические реакции в твердой фазе льда идти не могут из-за отсутствия свободного движения молекул. При замораживании клеток, особенно медленном, образуются крупные кристаллы льда внутри клетки, которые могут вызвать повреждения клеточных структурных элементов. Следовательно, клетки надо обезвоживать или замораживать так, чтобы не допустить необратимые изменения в них, в противном случае наступает летальное состояние — смерть, а не анабиоз. Зависимость жизненных процессов от воды иллюстрируется рис. 7. Если биополимеры и мембраны клеток необратимо теряют свои главные свойства — обмен веществ, способность к воспроизводству, способность к саморегуляции, тогда даже в присутствии воды жизнь прекращается и наступает летальное состояние. [c.26]

    Структуру и динамику самых разнообразных жидкостей, начиная от жидкого водорода и кончая расплавленными силикатами, можно изучать посредством различных спектральных методов. Среди них наиболее важны дифракция рентгеновских лучей, нейтронография, ядерный магнитный резонанс, лазерная спектроскопия комбинационного рассеяния и рассеяние света. Одним из самых мощных новейших методов является импульсное лазерное возбуждение. В пикосекундном диапазоне (10 с) мы можем исследовать движение молекулы растворенного вещества внутри клетки молекул растворителя. Теперь можно непосредственно наблюдать за фундаментальными химическими событиями в реальном времени. Например, можно наблюдать, как два атома иода в жидкости соединяются в молекулу, как захватывается (сольватируется) жидкой водой свободный электрон, как энергия, поглощенная молекулой растворенного вещества (азот или бензол), передается от нее окружающим молекулам растворителя. [c.190]


    Сеансы в совершенно темной комнате вокруг стола, когда присутствующие держат друг друга за руки, а на столе поставлена клетка с запертым внутри ее колокольчиком. Ожидаемое спиритическое явление составляет движение всей клетки и отдельно звон колокольчика. [c.188]

    Одна из проблем, связанных с процессом поступления элемента из внешнего раствора в растение, возникает в связи с тем, что это поступление может осуществляться против градиента концентрации, т. е. элемент может входить в клетку при условиях, когда концентрация внутри клетки превышает концентрацию во внешнем растворе. Множество исследований накопления ионов направлено на изучение сути процессов, включающих движение против градиента концентрации. Некоторые из них касаются природы носителей , которые участвуют в переходе ионов через мембрану. Накопление ионов в растениях против градиента концентрации обычно зависит от энергии, высвобождающейся при аэробном дыхании, но механизм перехода энергии в процессе накопления ионов понятен не полностью. [c.62]

    Ферменты и промежуточные продукты обмена веществ неравномерно распределены в отдельных элементах клеточной структуры. Упорядоченному движению молекул внутри клетки способствует высокая степень избирательности клеточной мембраны. Транспорт веществ через биологические мембраны, представляющие собой генетически детерминированные структуры, в которых заложена информация относительно тех процессов, выполнение которых они обеспечивают, является ферментативным процессом и обусловлен активностью мембранных ферментов. [c.439]

    К оболочке вплотную прилегает цитоплазматическая мембрана. Она обладает избирательной проницаемостью, т. е. пропускает внутрь клетки и отводит из нее определенные вещества. Благодаря такой способности мембрана играет роль органеллы, концентрирующей питательные вещества внутри клетки и способствующей выведению наружу продуктов жизнедеятельности. Внутри клетки всегда наблюдается повышенное по сравнению о окружающей средой осмотическое давление. Цитоплазматическая мембрана обеспечивает его постоянство. Кроме того, она является местом локализации ряда ферментных систем, в частности окислительно-восстановительных ферментов, связанных с получением энергии (у эукариотов они находятся в митохондриях). В отличие от клеток эукариотов в прокариотической клетке отсутствует деление ее на отсеки. Клетки прокариотов не имеют ни комплекса Гольджи, ни митохондрий, не наблюдается у них и направленного движения цитоплазмы. Явления пиноцитоза и фагоцитоза прокариотам не свойственны. Из органелл только рибосомы аналогичны рибосомам эукариотов. [c.43]

    По вопросу о роли движения протоплазмы в жизни клетки нет единой точки зрения, однако важность этого процесса сомнений не вызывает. Большое значение могут иметь круговые движения протоплазмы как один из быстрых путей перемещения веществ внутри клетки и из клетки в клетку. [c.35]

    Проникновение Са " внутрь клетки влияет на орган движения инфузории — реснички — точно так же, как у нас вхождение Са в мышечные клетки необходимо для их сокращения (мы рассказывали об этом, говоря про Са-насос). Кстати, и разрядка трихоцист у инфузорий связана с потоками Са в клетку. Большинство Са-каналов инфузорий расположено прямо на мембране ресничек. Если удар по передней части инфузории вызвал ПД, то откроется много Са-каналов, внутрь клетки войдет много Са , а от этого реснички инфузории меняют направление своего удара. Возникает реверс инфузория отплывает хвостом вперед от раздражителя, например от препятствия, на которое она натолкнулась. После того как Са-насос и митохондрии уберут излишки Са++ из цитоплазмы, нормальная работа ресничек восстанавливается. [c.262]

    Для изучения структуры ацетилхолинового рецептора были использованы методы электронной микроскопии и малоугловой дифракции рентгеновских лучей, однако точный ответ на вопрос, как образуется трансмембранный гидрофильный канал, до сих пор не получен. Было предложено несколько моделей, основанных главным образом на аминокислотной последовательности субъединиц Одна из моделей представлена на рис. 6-64. То, что кластеры отрицательно заряженных аминокислотных остатков выстилают отверстие канала, объясняет, но-видимому, известный факт, что отрицательно заряженные ионы не способны проходить через канал, а положительно заряженные ионы с размером до 0,65 нм могут это делать. Через канал проходят преимущественно ионы Ка" и К", а также некоторое количество Са ". Строгих ограничений на вид катионов не существует, поэтому поток каждого из них через канал определяется главным образом их концентрациями и электрохимическими движущими силами. Так как градиент напряжения уравновешивает градиент концентрации К" через мембрану при наличии потенциала покоя, то и движущая сила для ионов К близка к нулю (см. схему 6-2). Напротив, для ионов Ка как градиент напряжения, так и градиент концентрации действуют в одном направлении, способствуя движению ионов внутрь клетки. Это же справедливо и для Са ", но его внеклеточная концентрация намного [c.404]


Рис. 12-46. Этапы преобразования сигнала при хемотаксисе у бактерий. Химические аттрактанты связываются с хемотаксическими рецепторами типа 1 или 2 в плазматической мембране или с периплазматическими субстрат-связывающими белками, которые затем присоединяются к хемотаксическим рецепторам типа 3 или 4. Это приводит к активации рецепторов, и они передают внутрь клетки сигнал, заставляющий мотор жгутика вращаться против часовой стрелки в результате кувыркание подавляется и периоды прямолинейного движения становятся более длительными. Аттрактанты проникают в периплазматическое пространство снаружи через широкие каналы во внешней мембране Рис. 12-46. Этапы <a href="/info/141903">преобразования сигнала</a> при хемотаксисе у бактерий. <a href="/info/1706740">Химические аттрактанты</a> связываются с <a href="/info/1413135">хемотаксическими рецепторами</a> типа 1 или 2 в плазматической мембране или с периплазматическими субстрат-<a href="/info/1416121">связывающими белками</a>, которые затем присоединяются к <a href="/info/1413135">хемотаксическим рецепторам</a> типа 3 или 4. Это приводит к <a href="/info/1392513">активации рецепторов</a>, и они передают <a href="/info/1897907">внутрь клетки сигнал</a>, заставляющий мотор жгутика вращаться против часовой стрелки в результате <a href="/info/1413476">кувыркание</a> подавляется и периоды <a href="/info/1439799">прямолинейного движения</a> становятся более длительными. Аттрактанты проникают в <a href="/info/102276">периплазматическое пространство</a> снаружи через широкие каналы во внешней мембране
    Трансмембранный потенциал частично обусловлен избирательной проницаемостью клеточной мембраны, что ограничивает скорость движения одного иона относительно другого. К+, например, может проникать через мембрану значительно быстрее,, чем С1 . Если оба этих иона нутри клетки имеют более высокую концентрацию, чем вокруг нее, то более быстрая нетто-диф-фузия ионов К+ наружу по градиенту концентрации в конечном итоге приведет к возникновению более высокого отрицательного заряда внутри клетки, так как там останется избыточное ко- личество С1 . [c.223]

    Движение ионов через мембраны происходит частично благодаря электрохимическим градиентам и частично с помощью локализованных в мембранах насосов. Когда транспорт осуществляется по электрохимическому градиенту, ионы сначала присоединяются к особым участкам на мембране (пермеазам). Затем они проникают в клетку в соответствии с уравнением Нернста, если общий эффект градиента их концентрации по обе стороны мембраны и электрический трансмембранный потенциал обеспечивают движущую силу, направленную внутрь. Транс-, мембранные потенциалы образуются двумя путями 1) в результате диффузии как анионов, так и катионов, которые, однако, движутся через мембрану с разными скоростями 2) благодаря электрогенному транспорту с прямым использованием энергии для прокачивания протонов, анионов или катионов через мембрану против их электрохимических градиентов. Оба этих процесса всегда действуют таким образом, что внутри клетки создается более отрицательный заряд по сравнению с зарядом юне ее. [c.238]

    В отличие от рассмотренных ранее перемещений растений, которые, как правило, можно наблюдать только с помощью микроскопов, движения органов закрепленных в субстрате растений обнаруживаются обычно невооруженным глазом. Здесь мы встречаемся не только с различиями в размерах, но и с совершенно иными механизмами движений. Если движения внутри клеток, с помощью жгутиков и амебоидные, как и перемещения животных, основываются главным образом на способности белковых молекул сокращаться, органы прикрепленных растений изменяют свое положение в пространстве прежде всего благодаря процессам роста и колебаниям тур горного давления. Но несмотря на серьезные различия в механике движений, обнаруживается значительное сходство в проявлении основных физиологических закономерностей, связанных с раздражениями. Все, что мы обсуждали, рассматривая клетку и свободные перемещения растений, облегчит знакомство с изменением положения органов, которым вы, может быть, заинтересовались во время прогулок или экскурсий, посещения оранжерей или наблюдая растения у себя дома. [c.58]

    Различают активный и пассивный перенос (транспорт) нейтральных молекул и ионов через биомембраны. Активный транспорт происходит при затрате химической энергии за счет гидролиза АТФ или переноса электрона по дыхательной цепи митохондрий. Пассивный транспорт не связан с затратой клеткой химической энергии он осуществляется в результате диффузии веществ в сторону меньшего электрохимического потенциала (рис. 48). Примером активного транспорта может служить перенос ионов калия и натрия через цитоплазматические мембраны (К" — внутрь клетки, а Ыа" — из нее), перенос кальция через мембраны саркоплазматического ретикулума скелетных и сердечной мышц внутрь пузырьков ретикулума, перенос ионов водорода через мембраны митохондрий из матрикса наружу. Все эти процессы происходят за счет энергии гидролиза АТФ и осуществляются особыми ферментами — транспортными АТФ-азами (рис. 49). Наиболее известный пример пассивного транспорта — это движение ионов натрия и калия через цитоплазматическую мембрану нервных волокон при распространении потенциала действия. Впрочем, и в покоящейся клетке существует утечка ионов через мембраны, обусловленная их проницаемостью проницаемость обычно возрастает при патологии. [c.122]

    Калий. Калий необходим не только как питательный элемент, но п как стимулятор размножения дрожжей. Стимулирующее дей-стБие объясняется его существенной ролью в окислительном фос-форилировании и в процессах гликолиза. Движение неорганического фосфора внутрь клетки специфично стимулируется калием. Калий активирует дрожжевую альдолазу, необходим для действия фермента иируваткарбоксилазы и влияет, так же как азот и сера, на липидный обмен дрожжевых клеток. [c.199]

    Он образует цилиндрический канал, который с одной стороны выступает на 65 А в синаптическую щель, а с другой - пронизывает липидный бцслой мембраны, входя на 15 А внутрь клетки. Этот узкий канал (или пора) расширяется до 20 А при "посадке" на рецептор нейромедиатора (комплекс RAX) за счет резкого уменьшения вращательного (конформационного) движения субъединиц. Увеличение размера канала облегчает прохождение ионов К+ и Na+ через мембрану против электрохимического фадиента. При этом изменяется мембранный потенциал покоящегося нейрона 2, и в нем генерируется нервный импульс. После этого нейромедиатор гидролизуется ацетилхолинэстера-зой до неактивного холина, и ионофорныи канал закрывается. [c.31]

    Питание микроорганизмов осуществляется через поверхность их тела путем диффузии в результате разных концентраций веществ внутри и вне организма. Движение растворенных веществ лод действием осмотического давления происходит в сторону мень-щих концентраций, воды — в сторону больших. Так как поступающие в клетку вещества вовлекаются в биохимические процессы и усваиваются микроорганизмом, равновесия их внутри клетки и. вне ее практически не наступает. Однако проникновение вещества -В клетку не всегда объяснимо осмосом. Цитоплазматическая мембрана обладает избирательной способностью отличать нужные вещества от ненужных и извлекать их из растворов с малой концентрацией, не пропуская вредные для клетки вещества, содержащиеся в среде в значительных концентрациях (до определенных лределов). Так как поверхность клеток на единицу их массы лредставляет громадную величину, то процессы обмена и размножения микроорганизмов происходят с большими скоростями, и этим объясняются интенсивные биоповреждения некоторых материалов, на которых идут такие процессы. Давление в клетке создается поступившими в нее веществами, продуктами обмена и веществами клеточного синтеза. В связи с высоким осмотическим давлением внутри клетки создается постоянный приток в нее воды. Этим можно объяснить способность микроорганизмов развиваться на сравнительно сухих средах. Так, микрогрибы способны повреждать материалы, имеющие влажность 15...20 % и ниже. [c.15]

    Характерным свойством живого материала является то, что он движется. Степень движения меняется от явного перемещения в потоке цитоплазмы до движения ионов, электролитов, молекул и макромолекул относительно друг друга внутри клетки. В результате обмена веществ биологический материал постоянно изменяется, разрушая и перестраивая функциональную архитектуру клетки. Эта выраженная нестабильность мешает проведению рентгеновского микроанализа, если не найдены пути мгновенного сдерживания активности клетки и удержания ее в этом состоянии до тех пор, пока выполняются исследования. Если бы это было сделано, то окружающая среда, в которой должен производиться рентгеновский микроанализ, полностью была бы лишена жизненных процессов. Типичный одноклеточный организм менее 2 мкм в поперечинке синтезирует много сотен соединений путем тонкого регулируемого процесса, способен воспроизводить сам себя и генетически эволюционировать и видоизменять эти процессы. Если захотелось бы найти быстрый способ разрушения этого уникального тончайшего механизма, то, вероятно, не нашлось бы ничего лучше потока быстрых электронов, который за одну секунду смог бы испарить количество воды, во много раз превышающее вес образца. [c.266]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    Мышечное сокращение — лучше всего изученное механохи-мическое явление. К таким же явлениям относится множество биологических процессов движения растений движения клеток с помощью жгутиков и ресничек-, вся совокупность движений в дроцессах митоза и мейоза движения внутри не делящейся клетки сократительные процессы в хвостах фаговых частиц механохимические процессы в мембранах движение рибосом относительно мРНК в полисомах акустическая и механорецепция. [c.411]

    Концентрация и осмотическое давление различных жидкостей в организме поддерживаются на постоянном уровне действием специальных осморегуляторов. Осмотическое давлегше растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. Плазма крови, лимфа, слезная и спинномозговая жидкость имеют постоянное осмотическое давление (гипертонический раствор) в результате разности осмотических давлений внутри эритроцитов и окружающей та плазмы осуществляется движение воды из эритроцитов, идущее до выравнивания осмотических давлений. Эритроциты при этом, лишаясь части водьт, сморщиваются (плазмолиз). Если вводится раствор с малым осмотическим давлением (гипотонический раствор), жидкость проникает внутрь клетки эритроцит разбухает, клеточная оболочка может нарушиться, а клетка погибнуть (гемолиз). Чтобы избежать указанных осмотических сдвигов необходимо изотонизировать раствор до уровня осмотического давления биологических жидкостей оргатшзма. Такие растворы называются изотоническими. [c.635]

    Концентрация и осмотическое давление различных жидкостей в организме поддерживаются на постоянном уровне действием специальных осморегуляторов. Осмотическое давление растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. Плазма крови, лимфа, слезная и спинномозговая жидкость имеют постоянное осмотическое давление (гипертонический раствор) в результате разности осмотических давлений внутри эритроцитов и окружающей их плазмы осуществляется движение воды из эритроцитов, идущее до выравнивания осмотических давлений. Эритроциты при этом, лишаясь воды, сморщиваются (плазмолиз). Если вводится раствор с малым осмотическим давлением (гипотонический раствор), жидкость проникает внутрь клетки эритроцит разбухает, клеточная оболочка может нарушиться, а [c.371]

    Молекулы воды, некоторых газов (например, О2, Н2, N2) и углеводородов, концентрации которых во внешней среде выше, чем в клетке, проходят через ЦПМ внутрь клетки посредством пассивной диффузии. Движущей силой этого процесса служит фадиент конценфации вещества по обе стороны мембраны. Основным соединением, поступающим в клетку и покидающим ее таким путем, является вода. Движение воды через мембрану, подчиняющееся законам пассивной диффузии, привело к выводу о существовании в мембране пор. Эти поры пока не удалось увидеть в элекфонный микроскоп, но некоторые данные о них были получены косвенными методами. Расчетным путем установлено, что поры должны быть очень мелкими и занимать небольшую часть поверхности ЦПМ. Высказывается предположение, что они не являются стабильными сфуктурными образованиями, а возникают в результате временных пересфоек молекулярной организации мембраны. [c.50]

    Бактерии, имеющие палочковидную или цилиндрическую форму клетки, бывают разной длины от совсем коротких, почти кокков и коккобактерий (I—1,5 мкм), до длинных, иногда прямых, а иногда изогнутых или искривленных палочек и даже нитей (10—18 мкм и больше). Палочковидные формы бактерий широко распространены в природе. Их примерно в три раза больше, чем сферических. Это объясняется более выгодным соотношением массы и поверхности у цилиндра, чем у шара. Многие палочковидные формы подвижны. Органами движения служат так называемые жгутики. Среди палочковидных форм встречается довольно много видов, способных к образованию спор. Споры всегда образуются внутри клетки — эндоспоры. Спорообразующие палочковидные грамположительные аэробные формы называются бациллами и объединяются в род Ba illus. Споровые грамположительные анаэробные фор.мы, живущие без воздуха, [c.10]

    Ван-дср Ваальс [297] недавно отметил, что невозможно строго записать значение потенциальной энергии клатратированных молекул в виде суммы значений координат положения и ориентации. Вклад вращения в свободную энергию будет зависеть от состояния вибрации. Это последнее состояние, — говорит он, — соответствует движению молекул внутри клетки . Ярко выраженным доказательством такой потери свободы ориентации многоатомными молекулами в клатрате является меньшая энтропия их клатратов по сравнению с энтропией многоатомшзьх газов. [c.93]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]

    Перейдем теперь к генетике бактериофагов, которые изучены гораздо лучше, чем все другие вирусы. Картина заражения клетки бактериофагом следующая. Бактериофаг адсорбируется своим хвостом на внешней поверхности клетки, проделывает в оболочке микроскопическое отверстие, для чего в его хвосте присутствует специальный фермент со свойствами лизоцима, затем инъецирует внутрь клетки свое содержимое, что у больших фагов сопровождается настоящим сократительным движением (рис. 124). В результате от фага остается нустая белковая оболочка, или тень . Отдельные эпизоды во всей этой последовательности удается хорошо заснять с помощью электронного микроскопа. Освободить бактериальную клетку от адсорбированных на ней пустых оболочек фагов легко с помощью быстрой мешалки. [c.364]

    Аминокислота глицин представляет собой тормозный нейромедиатор, открывающий хло-ридные каналы в постсинаптической мембране и приводящей к ее гаперполяризации (внутри клетки увеличивается отрицательный заряд). Глицин играет важную роль в спинном мозге, где способствует контролю движений скелетных мышц, поддерживая их расслабление (предотвращая стимуляцию). О том, каково значение глицина, можно судить по действию стрихнина, который блокирует глициновые рецепторы, подавляя тем самым эффект глицина. В этом случае даже очень слабая стимуляция вызывает мышечное сокращение. Пострадавший от стрихни-нового отравления задыхается, поскольку не способен расслабить мышцы, участвующие в дыхании. [c.294]

    Пусть теперь внутри клетки имеется много свободных ионов какого-то элемента, например калия, а снаружи таких ионов нет или их гораздо меньше. Пусть клеточная мембрана пропускает только ионы и не пропускает никаких других ионов. Тогда ионы начнут выходить из клетки, где их много, наружу (двигаться по градиенту концентрации, диффундировать — все эти слова означают одно и то же). Вместе с ними будет выноситься наружу их положительный заряд. Внутрь через мембрану будет проходить мало ионов, так как снаружи мало калия. В реэультате на клеточной мембране будет возникать разность потенциалов снаружи клетки — плюс , а внутри — минус (рис. И). Эта разность потенциалов будет тормозить движение новых положительных заряженных ионов калия наружу и увеличивать поток этих ионов внутрь. Когда потоки ионов наружу и внутрь сравняются, установится динамическое равновесие и на мембране будет поддерживаться постоянная разность потенциалов. Это и есть потенциал покоя (ПП). Его величина описывается формулой Нернста (3.2). [c.61]

    Микротрубочки растут в одном направлении от специфических центров (центриолей) внутри клетки. На каждой хроматиде хромосомы (см. гл. 37) имеется кинетохор, откуда начинается рост микротрубочек. Многие нарущения в делении хромосом являются результатом аномалий в структуре или функции кинетохоров. Движение хромосом в анафазе митоза зависит от микротрубочек, но молекуляр- [c.345]

    Механизм движения везикул в клетке, очевидно, не диффузионный. Как мы увидим в дальнейшем, внутри живой клетки, как и в отдельных ее органеллах, нет места для диффузионной диссипации энергии. Все движения в клетке управляются межмолекулярными взаимодействиями и локальными электрическими полями. Так организован и транс-цитоз — транспорт молекул через клетку. Этот процесс характерен для поляризованных клеток, таких как эпителиальные клетки кишечника, которые имеют базальную и апикальную поверхности (каждая со своим определенным фосфолипидным составом), создающие электрическое попе в клетке и определяющие направление транспорта везикул. Примером может служить адсорбция антител, содержащихся в молоке матери, клетками кишечника новорожденного. Эти антитела поглощаются апикальной поверхностью эндотелиальных клеток, переносятся внутри клетки к базальной поверхности и затем вьщеляются с базальной поверхности в кровь. Аналогично организован механизм секреции тирео-идного гормона. Сначала тиреоглобулин выделяется в просвет фолликула щитовидной железы, затем происходит эндоцитоз тиреоглобулина эпителиальными клетками, в составе везикул он транспортируется через клетку, одновременно подвергаясь частичному протеолизу, и образованный в везикулах низкомолекулярный гормон тироксин секретируется в ближайший кровеносный капилляр. [c.120]

    Фаллоидин-высокотоксичный алкалоид гриба Amanita phalloides-ъ противоположность цитохалазинам стабилизирует актиновые филаменты и подавляет их деполимеризацию. Этот агент не может легко проходить через цитоплазматическую мембрану, поэтому его приходится инъецировать в клетку. Оказалось, что он блокирует миграцию не только амеб, но и различных клеток позвоночных в культуре по-видимому, процессы сборки и деполимеризации актиновых филаментов играют ключевую роль в амебоидном движении. Фаллоидин стабилизирует актиновые филаменты, высокоспецифичным образом связываясь с ними по всей их длине это позволяет использовать его флуоресцентные производные для окрашивания актиновых филаментов внутри клетки (см. рис. 10-78). [c.100]

    В состоянии геля основная плазма представляет собой дисперсную систему, в которой частицы диспергированного вещества расположены в дисперсионной среде в виде сети или сот и связаны друг с другом в местах соприкосновения. Эта имеющая высокую вязкость основная плазма образует канальцы меняющейся ширины, в которые устремляется менее вязкая основная плазма, находящаяся в состоянии золя. Необходимая для сокращения энергия поставляется в форме АТФ (аденозинтри-фосфорной кислоты), т. е. освобождается при гидролитическом расщеплении богатой энергией АТФ. При этом после отщепления от АТФ концевой фосфатной группы возникает АДФ (аденозиндифосфор-ная кислота). Как вам, может быть, уже известно, АТФ/АДФ-система — это главная система передачи энергии внутри клетки. Движения цитоплазмы могут быть вызваны как внутренними (автономными), так и внешними раздражениями. В этих случаях мы говорим о динезах (например, о фото-, [c.33]

    Что МЫ знаем о процессах, проходящих в сочленениях Как уже было упомянуто при обсуждении основных положений физиологии раздражений, возбуждение характеризуется проявлением потенциала действия. yMimosa pudi a он достигает примерно 140 мВ в это время потенциал покоя, как правило, равен —160 мВ, но после раздражения он увеличивается на —20 мВ. Согласно нащим современным представлениям электрофизиологические явления зависят прежде всего от ионов соединений хлора и калия, концентрация которых внутри клетки регулируется с помощью ионных насосов. Возбуждение моторных клеток приводит к временному нарушению структуры плазмалеммы. С этим связаны увеличение проницаемости мембраны, временная приостановка деятельности ионных насосов, выход ионов хлора и калия, а также резкое падение тургора. Кроме того, клеточный сок выходит из вакуоли в клеточную оболочку и в межклетники. Невооруженным глазом можно видеть, что нижняя сторона первичного сочленения становится явно более темной. Одновременно с потерей тургора моторными клетками, находящимися на нижней стороне, клетки верхней стороны частично теряют свою сопротивляемость. В уравнении сосущей силы это величина А. Следовательно, на верхней стороне увеличивается сосущая сила и соответственно поглощение воды, и лист опускается. Теперь можно также понять, почему при проявлении закона все или ничего подпороговые раздражения не суммируются, а ответная реакция наступает лишь после того, как будет превышен порог раздражения. Очевидно, это зависит от состояния мембраны. Возможно, что в выведении (выдавливании) воды участвуют и сократительные белки. На это указывает, в частности, высокое содержание АТФ в моторных клетках, сильно падающее во время движения. [c.128]


Смотреть страницы где упоминается термин Движения внутри клеток: [c.139]    [c.130]    [c.137]    [c.177]    [c.180]    [c.80]    [c.483]    [c.197]    [c.397]    [c.432]    [c.64]    [c.183]    [c.30]   
Смотреть главы в:

Движения у растений -> Движения внутри клеток




ПОИСК







© 2025 chem21.info Реклама на сайте