Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика коррозионного элемента

    КИНЕТИКА КОРРОЗИОННОГО ЭЛЕМЕНТА [c.44]

    Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f (i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд- [c.194]


    Кинетика работы коррозионного элемента, определяющая скорость электрохимической коррозии, зависит от степени торможения анодного и катодного процессов, а также от процесса переноса зарядов в металле, и в электролите. [c.13]

    Работу коррозионных элементов, обусловленных гетерогенным характером поверхности, разделяющейся на анодную зону 0 и катодную 1—0, можно также рассмотреть с позиций электрохимической кинетики подобно тому, как ранее это было выполнено для металлов с однородной поверхностью. Поэтому, исходя из тех же предпосылок, какие были сделаны при выводе формул (7.17) и (7.18), для стационарного потенциала коррозионного элемента и величины коррозионного тока при стационарном потенциале соответственно будем иметь  [c.150]

    Кинетика процесса определяется рядом факторов, влияющих на протекание и скорость анодных и катодных процессов и соответственно отражающихся на изменениях силы тока и потенциалов в этих процессах. Самым важным фактором является поляризация —изменение значений начальных потенциалов электродов (анода и катода) при замыкании цепи в коррозионном элементе. [c.35]

    Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процесса, работа коррозионного элемента и пассивность рассмотрены в работах № 4—11. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, подземная коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, иллюстрируются работами № 12—19. Современные методы коррозионных исследований даны в работе № 20, а также в работах № 5, 12, 14—19 при выполнении частных задач. [c.51]

    Исключительно большое значение для исследования процессов электрохимической коррозии имеют современные методы исследований, такие, как измерения электродных потенциалов металлов, определения кинетики электродных процессов по поляризационным кривым и по токам модельных коррозионных элементов, определение емкости электрода и омических сопротивлений, определение работы выхода электрона, построение кривых заряжения и ряд других. [c.6]

    Анодная поляризация обычно оказывает меньшее влияние на изменение разности потенциалов элемента, чем катодная поляризация. Рассмотрим причины анодной поляризации и степень ее влияния на кинетику коррозионного процесса. [c.32]


    Последний вывод свидетельствует о том, что механизм коррозионного элемента способен влиять и на кинетику восстановительных реакций, хотя это влияние, как показано выше, ограничено предельным значением растворимости кислорода в воде. [c.48]

    Приведенные результаты кинетики механохимического разрушения реализуются в основном при проведении коррозионно-усталостных испытаний, поскольку в реальных конструкциях номинальные напряжения не превосходят предела текучести металла От (в среднем Стн 0,6 ат). Тем не менее, результаты анализа могут быть использованы при оценке долговечности реальных конструктивных элементов. Наличие различного рода концентраторов способствует реализации в локальных образцах упруго- [c.91]

    Далее рассмотрим кинетику механохимического разрушения конструктивных элементов в условиях мягкого нагружения (рис.2.3). Если в цилиндре номинальные напряжения Стн не превышают предела текучести, то в условиях циклического нагружения на воздухе он должен иметь неограниченную долговечность. Однако, при работе цилиндра в коррозионных средах картина изменяется. По мере коррозионного растворения стенки цилиндра напряжения в нем возрастают и когда они превысят предела [c.92]

    На основании уравнений механики деформируемого твердого тела и предложенного кинетического уравнения механохимической повреждаемости выполнен анализ кинетики изменения напряженно-деформированного состояния, и скорости коррозии материала оборудования оболочкового типа. Предложены и экспериментально подтверждены математические зависимости для предсказания долговечности конструктивных элементов различной формы в условиях одновременного действия коррозионных сред и внешних силовых нагрузок стационарного и нестационарного характера. [c.139]

    Существует тесная взаимосвязь между теоретической электрохимией и такими разделами прикладной электрохимии, как гальванотехника, защита от коррозии, создание новых электрохимических источников тока и хемотронных устройств. Роль электрохимической кинетики для решения прикладных задач в этих областях возрастает с каждым годом. Вместе с тем потребности практики являются мощным стимулом для дальнейшего развития теоретических направлений. Так, загрязнение окружающей среды коррозионно-активными агентами, широкое использование новых металлов и сплавов, зачастую достаточно дорогих, в современных технике и строительстве все более остро ставят проблему защиты металлических конструкций от коррозии. Это способствует постановке новых задач при теоретическом исследовании коррозии и пассивности металлов. Значительный интерес к явлениям адсорбции и кинетике электродных процессов на платиновых металлах был вызван в первую очередь практическими работами по созданию топливных элементов. [c.390]

    Накопление и систематизация экспериментальных данных по кинетике и механизму коррозионного поведения двух- и трехкомпонентных сплавов в растворах и расплавах электролитов имеет большое значение при создании различных топливных элементов. В связи с этим в настоящей работе проведено изучение коррозионной стойкости сплавов на основе железа, алюминия, титана в расплавах и растворах электролитов и осуществлен подбор ингибиторов коррозионного процесса. Данное исследование проводится в рамках темы 2.57.99. [c.25]

    В сталях с марганцем и молибденом достаточно стабильный аустенит может быть получен при меньшем содержании хрома, так как эти элементы снижают и марганец делает кинетику мартенситного превращения более вялой. Различие в химическом составе фаз может оказывать влияние на коррозионную стойкость стали в соответствии с известными закономерностями влияния хрома на пассивируемость стали в зависимости от потенциала среды и быть причиной избирательной коррозии. [c.32]

    Математическая модель коррозии представляет собой совокупность соотношений, связывающих характеристики коррозионного процесса с различными факторами, влияющими на кинетику коррозии. К таким факторам относятся химический и фазовый состав металла и сплава, состояние поверхности металла, факторы, характеризующие конструктивное исполнение изделий, режим эксплуатации элементов химико-технологической системы, характеристики контактирующей водной среды, внешние воздействия и др. [c.173]

    Чтобы изучить теорию процессов электрохимической коррозии, нужно знать главным образом общие законы и механизм работы коррозионных гальванических элементов, в частности, электродные потенциалы и кинетику (или поляризуемость) катодных и анодных реакций. [c.50]

    В первой части дан необходимый минимум информации о кинетике электродных процессов (на металлах) и влиянии потенциала на их скорость, причем уже здесь по ходу изложения вводятся некоторые понятия и элементы потенциостатических измерений. Читатели, достаточно знакомые с общими положениями электрохимической кинетики, но не изучавшие процессов растворения и пассивации металлов, могут начать ознакомление с книгой с последней главы этой части, где описаны главные особенности зависимости скорости реакции ионизации металлов от потенциала, наиболее часто являющейся предметом потенциостатических коррозионных исследований. Наконец, читатели, знакомые по литературе и с этими вопросами, но не имеющие собственного опыта потенциостатических измерений, могут ограничиться второй и третьей частями, где отражены основные методические вопросы. Четвертая часть полностью [c.7]


    При анализе коррозионной стойкости промышленных сплавов необходимо иметь в виду, что в их состав могут входить различные легирующие и примесные элементы. Участие их в окислительно-восстановительных процессах обусловливает иногда резкое изменение коррозии. Поэтому различие в коррозионной стойкости конструкционных сплавов и металлов-основ обычно существенны, и при оценке кинетики процессов коррозии, критериев и параметров электрохимической защиты роль состава сплавов следует учитывать. [c.7]

    По современным воззрениям, процесс коррозии металла, или сплава, под слоем электролита (водные растворы солей, кислот и Щелочей) имеет электрохимическую природу и может быть истолкован на основе общих принципов электрохимической кинетики, например, на основе анализа работы коррозионных гальванических элементов. Принципиальная схема подобного коррозионного гальванического элемента приведена на рис. 49. [c.96]

    В завпсимости от того, происходит ли катодная деполяризация в основном за счет разрядов ионов водорода, ионизацией растворенного в р-ре кислорода или восстановлением к.-л. окислителей, различают коррозию с водородной, кислородной или окислительной деполяризацией. Изучение механизма и разработка теории процессов электрохимич. коррозии металлов в значительной мере основываются на общих законах электрохимич. кинетики и, в частности, на изучении электродных потенциалов, кинетики электродных реакций и общих законов работы коррозионных гальванич. элементов. [c.362]

    Определение влияния на силу тока коррозионного элемента соотношения площадей анодной и катодной зон представляет простой и удобный в экспериментальном отношеггии способ проверки электрохимического механизма коррозии металлов в растворах электролитов. Характер такого влияния может быть количественно выражен, исходя из основных положений кинетики электрохимических процессов, протекающих на аноде и катоде коррозионного элемента при его работе. Наобходимо, однако, сделать определенные допущения относительно конкретных условий работы коррозионного элемента. Если, в частности, полностью исключить диффузионные ограничения, то для металлов с небольшим током обмена по собственным ионам общее условие стационарности определяется формулой (9.6), в которое входит величина анодной зоны поверхности и катодной зоны 5 . Для последу ющего целесообразно принять за единицу сумму поверхности анодной и катодной зон, положив, что = Вд, 5 = 6 , и что 0 + 0 , = 1. При этом Вд и В соответственно будут иметь смысл безразмерной величины доли поверхности анода и катода. Примем во внимание, что [c.255]

    В разделе 5.2 дан анализ кинетики МХПМ и долговечности конструктивных элементов при упругих деформациях. За долговечность конструктивных элементов принималось время, в течение которого первоначальное эквивалентное напряжение достигает своего предельного значения, равного пределу текучести. Однако возникновение пластических деформаций не вызывает разрушения. После наступления текучести констрктивный элемент может сопротивляться действию внешних сил до тех пор, пока деформации (напряжения) не достигнут некоторого критического значения, вызывающего разрушение. В этом случае анализ долговечности значительно усложняется, поскольку кинетика МХПМ определяется двумя факторами напряжениями и деформацией. Кроме того, пластическая деформация, наряду с усилением коррозионного растворения металла, приводит к заметному деформационному утонению стенок оборудования. [c.314]

    Проблема обеспечения работоспособности оборудования в условиях механохимической повреждаемости материала (МХПМ), обусловленной особенностями кинетики химических реакций на поверхности напряженных конструктивных элементов, обостряется в связи с современной тенденцией повышения степени напряженности материала и коррозионной активности перерабатываемых сред и относится к числу малоизученных, сложных и актуальных проблем. [c.3]

    Установлены факторы механохимической повреждаемости и раскрыт механизм технологического наследования при производстве оборудования. В результате анализа кинетики МХПМ получены функциональные зависимости долговечности конструктивных элементов, изготовляемых упруго-пластическим деформированием, от величины остаточных напряжений и степени предварительной деформации, исходных механических свойств материала, уровня напряженности при эксплуатации и коррозионной активности рабочей среды. Предложен критерий оценки влияния предварительной пластической деформации и деформационного старения на охрупчивание сталей в рабочих средах. [c.5]

    Дпя большинства металлов в реальных условиях электрохимическая коррозия протекает гетерогенно-электрохимическим путем, т.е. через локальные элементы. Разные точки поверхности металлов различаются энергией и свойствами, что отражается на кинетике электрохимической реакции. Особенно много таких зон возникает, когда металл содержит инородные включения (рис. 3.4). При наличии электролита с высокой элктропроводностью на этих неоднородностях появляются местные гальванопары, теорию которых разрабатывали де ля РиБ, А.К. Фрумкин, Ф.И. Гизе, H.A. Изгарышев, Г.В. Акимов, А.И. Голубев и др. Однако в том случае, когда интересует только общая величина коррозии, а не распределение ее по поверхности, всю корродирующую поверхность можно считать однородной. Следует иметь в виду, что при такой замене средняя скорость коррозии не определяет опасность коррозионных разрушений (может иметь место питтинговая коррозия). При этом скорость коррозии характеризуется ано,дной плотностью тока Л = //5а, где 5 - площадь анода. Причины появления неоднородности металлов - макро- и микровключения, неоднородность сплава (наличие сварных швов), разнородность металлов, нарушение изоляционного покрытия, наличие на металле окалины, ржавчины, неравномерная деформация, неравномерность приложенных нагрузок и др. [c.37]

    В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как бьшо показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1. [c.68]

    Несмотря на значительное число экспериментальных исследований, посвященных коррозионно-стойкому легированию, некоторые обобщающиё принципы использования легирующих элементов известны лишь для пассивирующихся сплавов [182, 183]. Обоснования же выбора добавок, предотвращающих СР сплавов в активном состоянии, до сих пор фактически отсутствуют. По этой причине .настоящем разделе будет дано лишь качественное описание влияния различных добавок на анодное поведение и селективную коррозию латуней, для которых подробно изучены механизм и кинетика этих процессов, а также имеется достаточно богатый экспериментальный материал, отражающий модифицирование свойств латуней в результате легирования. [c.171]

    Для исследования коррозии и ее влияния на техническое состояние аппаратурных элементов химико-технологической системы удобно использовать детерминированные по методу описания модели, т. е. модели, заданные логическими, алгебраическими или дифференциальными уравнениями, либо их решениями в виде функций времени и экспериментальными данными испытаний. Целью моделирования в этом случае служит либо итог коррозии (/, Ат, АР, Да и др.), либо изучение кинетики процесса. В тех1нике под скоростью коррозии часто понимают среднюю скорость коррозионного процесса Уср  [c.174]

    При изменении температуры с 20 до 80° ток возрос для элемента железо — цинк в 3,3 раза, микроэлемента в 4 раза и элемента магний — медь в 2,4 раза. Иными словами, наибольший рост коррозионного тока был зарегистрирован в тех случаях, когда его сила определялась скоростью протекания катодной реакции. При смешанном контроле ток возрос в меньшей степени. Очевидно, анодная реакция ионизации магния в меньшей степени чувствительна к изменению температуры, что отчасти объясняется тем, что в стационарных условиях скорость процессаопределяется диффузией ионов в глубь раствора, а не кинетикой электрохимической реакции. [c.227]

    При исследовании коррозионного поведения металлов и сплавов в жидких средах часто возникает задача определения в растворе весьма малых количеств продуктов растворения. С такой задачей исследователь сталкивается, например, при измерении скоростей растворения коррозионно-стойких металлов и сплавов, особенно при потенциалах пассивной области или при очень отрицательных потенциалах, при исследовании кинетики начальных стадий растворения, при оценке коррозионной стойкости анодов из благородных металлов в различных условиях электролиза, при определении скорости растворения микропримесей и в ряде других случаев. Чувствительность обычных, традиционных методов, используемых при таких коррозионных испытаниях, как определение весовых потерь или колориметрическое определение продуктов коррозии в растворе, часто недостаточна для проведения соответствующих измерений. В этих случаях весьма эффективным может оказаться применение радиохимического метода, сущность которого состоит в следующем. В исследуемый образец вводятся радиоизотопы составляющих его элементов. Затем образец подвергается коррозионному испытанию, [c.93]

    Возникновение коррозионных гальванических элементов должно рассматриваться не как первопричина коррозионного процесса, но лишь как один из возможных путей (и, практиче-ски, -часто-основной) для перехода системы из термодипами-чески неустойчивого состояния в термодинамически устойчивое. Протекание коррозионного процесса электрохимическим путем, таким образом, аналогично протеканию реакции в гальваническом элементе. Поэтому теория процессов электрохимической коррозии в значительной мере основывается на изучении общих законов механизма работы коррозионных гальванических элементов и, в частности, на изучении электродных потенциалов и кинетики электродных реакций. [c.100]


Смотреть страницы где упоминается термин Кинетика коррозионного элемента: [c.33]    [c.102]    [c.162]    [c.391]    [c.33]    [c.581]    [c.161]    [c.2]    [c.227]   
Смотреть главы в:

Кинетика коррозионного разрушения металла подземного трубопровода -> Кинетика коррозионного элемента




ПОИСК





Смотрите так же термины и статьи:

Коррозионный элемент



© 2024 chem21.info Реклама на сайте