Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олигосахариды в природе

    К углеводам относятся многие соединения, обладающие более сложной структурой, чем простые сахара. Большинство углеводов, встречающихся в природе, состоит из двух или более молекул сахаров. Названия различных классов углеводов показывают, из какого числа молекул простого сахара (моносахаридов) состоит молекула углевода (например, дисахариды и трисахариды), в то время как термины олигосахариды и полисахариды используются для обозначения соединений, содержащих мало или много моносахаридных фрагментов. Хотя многие полисахариды построены из гексоз, также хорошо известны полисахариды, содержащие тетрозы и пентозы. [c.280]


    Обычно строение олигосахаридов соответствует основной структуре исходного полисахарида и исследование их дает важные сведения о строении молекул, о природе связи между моносахаридами, порядке распределения отдельных остатков и ответвлений в цепи. [c.124]

    Олигосахариды и полисахариды являются полимерами (поли-конденсатами), в которых моносахаридные звенья соединены гли-козидными связями, чаще всего по положениям 1,4 или 1,6. Олигосахариды при гидролизе дают несколько молекул моносахаридов, полисахариды — множество таких молекул. Обычно мономерным звеном в природных полимерах служат остатки Д-глюкозы. Большинство других олиго- и полисахаридов, находимых в природе, также построены из моносахаридов С-ряда. Хотя для несложных олигосахаридов можно построить систематические названия, однако обычно используют тривиальные. [c.257]

    Полисахариды представляют собой высокомолекулярные соединения, образующиеся в результате реакций конденсации, при которых обычные нейтральные моносахариды (или такие моносахариды, как 2-амино-2-дезоксигексозы или соответствующие гекс-Уроновые кислоты) соединяются путем образования гликозидных связей между гидроксильной группой у С-1 одного моносахаридного звена и свободной гидроксильной группой другого звена с Отщеплением воды. Связи между остатками моносахаридов имеют ту же природу, что и в олигосахаридах, и эти два типа соединений отличаются друг от друга лишь молекулярной массой. [c.207]

    Самая примечательная особенность таких циклических олигосахаридов— это их способность координировать различные-молекулы в своих полостях [4]. Координированные молекулы-гости разительно отличаются по своей природе от маленьких молекул инертных газов до огромной молекулы ацилированного. кофермента А. Устойчивость образующихся комплексов зависит [c.319]

    Как и при сульфитной варке, гемицеллюлозы древесины хвойных пород переходят в раствор с некоторым опережением по сравнению с растворением лигнина, а при использовании древесины лиственных пород значительное растворение гемицеллюлоз начинается лишь после извлечения из растительной ткани основной массы лигнина. Степень полимеризации переходящих в раствор олигосахаридов определяется в первую очередь их природой. В табл. 7.2 приведены данные, полученные при хроматографическом определении моносахаридов в щелоках, отобранных в начальной стадии варки, когда растворилось менее 40 % массы древесины смеси хвойных и лиственных пород. Табличные данные представляют собой отношение концентрации моносахаридов после проведения инверсии щелоков к их содержанию в исходных щелоках. [c.211]


    ВЛИЯНИЕ ПРИРОДЫ УГЛЕВОДОВ НА СТЕПЕНЬ ПОЛИМЕРИЗАЦИИ ОЛИГОСАХАРИДОВ ПРИ БИСУЛЬФИТНОЙ ВАРКЕ [c.212]

    Моносахариды, как известно, очень редко встречаются в природе в свободном состоянии. Обычно остатки моносахаридов входят в состав более СЛОЖНЫХ соединений — гликозидов или полисахаридов, причем остатки моносахаридов связаны с агликоном и между собой с помощью гликозидных связей. В настоящем разделе рассматривается биосинтез и расщепление гликозидной связи на примере простейших гликозидов и олигосахаридов (о метаболизме полисахаридов см. гл. 22). [c.396]

    НАХОЖДЕНИЕ В ПРИРОДЕ, ВЫДЕЛЕНИЕ И СВОЙСТВА ОЛИГОСАХАРИДОВ [c.419]

    Гл. 15. ОЛИГОСАХАРИДЫ В ПРИРОДЕ, ВЫДЕЛЕНИЕ И СВОЙСТВА [c.422]

    Гликозидная природа полисахаридов обусловливает их гидролиз в кислой и высокую устойчивость в щелочной средах. Полный гидролиз приводит к образованию моносахаридов или их производных, неполный — к ряду промежуточных олигосахаридов, в том числе и дисахаридов. [c.414]

    Гликопротеины — содержат в своем составе гликозидные компоненты различной природы, ковалентно связанные с белком. Небольшие олигосахарид-ные группы могут присоединяться к белкам через О-гликозидную связь к гидроксилам остатков серина или треонина, а также через Л -гликозидную связь к [c.48]

    Из олигосахаридов в природе наиболее щироко распространены дисахариды. [c.231]

    Полимерная природа полисахаридов определяет и их основные химические свойства. Вклад альдегидной группы незначителен, основную функциональную нагрузку несут гидроксильные группы. Как и в олигосахаридах, гликозидные связи в полисахаридах чувствительны к действию кислот. [c.467]

    ОЛИГОСАХАРИДЫ (греч. oligos — немного) — полимерные углеводы, построенные из небольшого числа (2—10) остатков моносахаридов. О. встречаются в природе в свободном состоянии, их выделяют из природных источников и получают синтетически. [c.181]

    Реакции трансгликозилирования, катализируемые карбогидразами, известны достаточно давно (см. [126]) и традиционно рассматриваются как характерная особенность гликозидаз. При этом обычно полагают, что реакции гидролиза и трансгликозилирования (переноса гликона на соответствующий акцептор, как углеводной, так и неуглеводной природы) протекают параллельно (см. схему 155). Такие реакции часто приводят к появлению в реакционной системе промежуточных олигосахаридов более высокой степени полимеризации, чем исходный субстрат. Это легко проиллюстрировать с помощью схемы (155), если роль внешнего нуклеофильного агента (акцептора) играет сам исходный субстрат [c.188]

    Класс углеводов объединяет моносахариды — соединения, имеющие химическую природу оксиальдегидов или окси кетонов, но су шествующие преимущественно в таутомерных циклических формах дисахариды (или в более общем виде — олигосахариды от греч. олигос — мало) — продукты конденсации друг с другом двух (вообще нескольких) молекул моносахаридов по типу простых эфиров с выделением воды полисахариды — высокоыолекуляриые вещества, продукты конденсации большого числа молекул моносахаридов. [c.280]

    ДИСАХАРИДЫ, олигосахариды, содержащие 2 моносаха-ридных остатка. Нек-рые невосстанавливающие (сахароза, трегалоза) и восстанавливающие (лактоза, мальтоза) Д. распростр. в природе в своб. виде. Получ. частичным гидролизом высших олигосахаридов или полисахаридов. См. также Олигосахариды. [c.179]

    Углеводы встречаются в природе чаще всего в виде олигосахаридов (полимеров, содержащих от двух до десяти мопосахаридных единиц) либо полисахаридов (полимеров, включающих в свой состав более десяти мономеров). В данной главе мы рассмотрим некоторые наиболее важные ди- и полисахариды. Эти полимеры возникают в результате реакции между гидроксильной группой при нолуацетальном атоме углерода одного моносахарида н гидроксильной группой второй моносахаридной единицы (разд. 17.4). Как правило, эти связи образуются между С1 одной альдозы и С4 другой альдозы, но могут возникать также между С1 и С2, С1 и СЗ и между С1 и Сб. [c.453]

    Олигосахариды классифицируют по числу остатков молекул моносахаридов (от 2 до 10), входящих в состав их молекулы. Олигосахариды подразделяют на дисахариды, трисахариды, тетрасахариды и т.д. Из олигосахаридов наиболее распространены в природе и представляют наибольший практический интерес дисахариды — сахароза и мальтоза из трисахаридов — раффиноза. Сахароза, мальтоза и раффиноза под действием ферментов дрожжей также сбраживаются в этиловый спирт и углекислый газ. Химическое обозначение дисахаридов — С12Н22ОП, трисахаридов — С18Н32О16. Моносахариды и олигосахариды называют также сахарами. [c.31]

    Степень полимеризации П. составляет от 10-20 до неск. тысяч остатков. Каждый моносахаридный остаток в составе П. может находиться в пиранозной или фуранозной форме и иметь а- или Р-конфигурацию гликозидного центра (см. Моносахариды). Моносахаридный остаток способен образовывать одну глнкозидную связь с соседним моносахаридом, но может предоставить иеск. гидроксильных rpyim для присоединения др. моносахаридов. В соответствии с этим, как и в случае олигосахаридов, молекулы П. могут быть линейными или разветвленными. Линейные П. имеют один невосстанавливающий и один восстанавливающий конец в разветвленных П. также м. 6. только один восстанавливающий конец, тогда как число невосстанавливающих концевых моносахаридных остатков на 1 превышает число разветвлений. Благодаря гликозидной гидроксигруппе восстанавливающего конца молекулы П. могут присоединяться к молекулам неуглеводной природы, напр, к белкам и пептидам с образованием гликопротеинов и протеогликанов, к липидам с образованием липополисахаридов и гликолипидов и т.д. в сравнительно редких случаях наблюдается образование циклических П. [c.21]


    Полисахариды - высокомол. соед., линейные или разветвленные молекулы к-рых построены из остатков моносахаридов, связанных гликозвдными связями. В состав полиса-х ШДов могут входить также заместители неуглеводной природы (остатки алифатич. к-т, фосфат, сульфат). В свою очередь цепи высших олигосахаридов и полисахадидов могут присоединяться к полипептидным цепям с образованием гликопротеинов. [c.23]

    Четкую границу между олигосахаридами и полисахаридами провести трудно обычно к полисахаридам относят вещества, содержащие более десяти моносахаридных звеньев. Соединения, молекулы которых состоят из 5—15 моносахаридных звеньев, редко встречаются в природе. Обычно в состав полисахаридов входит 80—100 моносахаридных звеньев известно лищь несколько полисахаридов, содержащих 25—75 моносахаридных остатков. Известны также некоторые полисахариды, в состав которых входит более ста моносахаридных остатков например, нативная целлюлоза содержит в среднем 3000 таких остатков. Полисахариды существуют в виде смесей полимергомологов, а не в виде набора дискретных макромолекул с одной и той же молекулярной массой. [c.208]

    Метод масс-спектрометрии играет большую роль в определении строения полисахаридов. Его используют не только для идентификации производных, полученных при анализе методом метилирования (см. разд. 26.3.2.1), но и для анализа олигосахаридов непосредственно после перевода их в одно из вышеупомянутых летучих производных [23—25, 44—47] (см. разд. 26.3.2.6). Этим методом может быть определена молекулярная масса небольших олигосахаридов, а также последовательность моносахаридных остатков и положение гликозидных связей, хотя для этого обычно необходимы сведения о природе входящих в состав олигосахарида углеводов [48,49]. Прямая масс-спектрометрическая идентификация олигосахаридов, содержащих более четырех моносахаридных остатков, затруднена, однако была изучена фрагментация полностью ацетилированных гликозидов пентасахаридов [50], а сравнительно недавно описан метод определения О-фруктозных звеньев в полностью метилированных олигосахаридах, который дает информацию о соотношении пиранозных и фуранозных форм и положении гликозидных связей [51]. [c.225]

    Электрофорез не заменяет хроматографию, но дает очень ценную дополнительную информацию, так как разделение при электрофорезе основано на других свойствах молекул (заряд, размер, форма). Высоковольтный электрофорез на бумаге применен для разделения не только моно-, но и олигосахаридов. Этот метод может быть использован не только для производных углеводов, содержащих заряженную группу (как, например, гексуроновые кислоты, аминомоносахариды, сульфаты и фосфаты моносахаридов), но и для нейтральных соединений, способных образовывать заряженные комплексы с такими электролитами, как борат, арсе-нит или молибдат натрия. Относительные подвижности углеводов зависят от природы комплексообразователя [57]. Правильный выбор электролита часто позволяет идентифицировать углевод. Разделение кислых полисахаридов [58] проводят с помощью высоковольтного электрофореза на бумаге, нейтральные полисахариды предварительно превращают в боратные производные [59]. [c.226]

    Установление строения. Для установления строения гликозидов, содержащих один моносахаридный остаток, необходимо установить природу моносахарида, строение агликона, размер окисного цикла моносахаридного остатка и конфигурацию гликозидной связи. Для решения первой задачи проводят гидролиз гликозида, после чего идентифицируют образовавшийся моносахарид (см. гл. 14) и производят установление строения или идентификацию агликона методами, принятыми в соответствующих разделах органической химии. Для полифункциональных агликонов задача осложняется тем, что при этом возникает необходимость выяснения места присоединения углеводного остатка к агликону. Кроме того, некоторые природные агликоны (например, агликоны сердечных гликозидов) лабильны в кислой среде, что затрудняет получение неизмененного агликона при гидролизе. В таких случаях прибегают к ферментативному гидролизу (см. стр. 208) или используют некоторые специальные приемы (см., например, " ). Многие природные гликозиды содержат несколько моносахаридных остатков, соединенных друг с другом О-гликозидными связями. Установление строения таких соединений включает помимо решения перечисленных задач установление строения олигосахаридной цепи (или цепей) методами, применяемыми в химии олигосахаридов (см. гл. 16). Для определения размера окисного цикла моносахаридного остатка применяют два метода метилирование и перио-датное окисление. Первый метод заключается в получении метиловых эфиров гликозидов и их последующем гидролизе метилированию подвергаются все спиртовые гидроксилы моносахаридного остатка, за исключением того, который принимал участие в образовании окисного цикла исходного гликозида. Поэтому установление положения метоксильных групп в полученном при гидролизе метилированном моносахариде позволяет установить, который из спиртовых гидроксилов участвовал в образовании цикла. [c.206]

    Химия кетоз представляет собой значительно более сложную и менее изученную область химии моносахаридов, чем химия альдоз. Кетозы в меньшей степени распространены в природе, чем альдозы, а их природные представители менее разнообразны. Из всех кетоз наибольшее значение имеет Л-фруктоза, играюш,ая наряду с глюкозой первостепенную роль в энергетическом обмене углеводов (см. гл. 13). Л-Фрукто-за входит в состав ряда растительных полисахаридов, а также и олигосахаридов, в том числе в состав важнейшего из них — сахарозы. В ограниченном числе природных объектов обнаружены также -сорбоза Д-тагатоза Л-псикоза и Ь-трео-пентулоза . Представитель высших кетоз — седогептулоза и фосфаты пентулоз играют центральную роль в процессе фотосинтеза (см. гл. 13). В полисахаридах бактериальных стенок обнаружены 2-кето-З-дезоксиальдоновые кислоты. К 2-кето-З-дезоксиальдоновым кислотам относятся и сиаловые кислоты — важнейшая группа моносахаридов, входящих в состав смешанных углеводсодержащих биополимеров (см. гл. 12 и 21). Эта глава посвящена общей характеристике химического поведения и методов получения кетоз, главным образом на примере простейших представителэй кетогексоз и кето-пентоз. [c.239]

    Трансгликозилазы специфичны к донорам с гликозидными связями определенной конфигурации, поэтому при переносе гликозильного остатка в новых гликозидах конфигурация гликозидной связи чаще всего остается такой же, как и в доноре, т. е. перенос осуществляется с сохранением конфигурации. При трансгликозилироваиии гл в зависимости от природы фермента и акцептора происходит или случайное распределение гликозильных остатков по различным гидроксильным группам, или достаточно избирательное гликозилирование одного из гидроксилов. В результате может осуществляться как более или менее направленный синтез олигосахаридов, так и образование смеси изомеров, но с определенной конфигурацией гликозидных связей. [c.471]

    Поскольку в большинстве гликопротеинов углеводная часть является определяющей для проявления специфической биологической активности, очень важное место в установлении концевой последовательности олигосахаридных цепей играют иммунохимические методы, которые одновременно позволяют непосредственно определить и структуру антигенных детерминантов. Так, испытывая ингибирующее действие различных моно-и олигосахаридов и их производных на нммунохимпческую реакцию исследуемого гликопротенна с соответствующей антисывороткой, можно сделать заключение о природе антигенных детерминантов . Этот путь играет особенно большую роль в исследовании гликопротеинов и оказался весьма плодотворным при изучении групповых веществ крози. Испытывалось ингибирующее действие на реакции гемагглютинации групповых веществ крови с соответствующими им антисыворотками различных веществ как продуктов частичной деградации этих биополимеров, так и модельных соединений. На основании этих данных были сделаны заключения о природе концевых моносахаридов в групповых веществах, являющихся антигенными детерминантами (обзор см. ). [c.575]

    Наконец, испытывая олигосахариды, полученные при кислотном гидролизе групповых веществ, и некоторые модельные моносахариды и их производные в качестве ингибиторов иммунологической реакции данного группового вещества с соответствующей антисывороткой (см. стр. 575) также удалось сделать заключение о природе концевых групп в глико-пpoтeинe На основании данных всех этих исследований считают наиболее вероятным, что концевыми группировками, служащими иммунологическими детерминантами групповых веществ, являются группировки, приведенные нижe  [c.582]

    Т. е. для биополимеров, не имеющих регулярной структуры, необходимо установление общего плана построения молекул сюда относятся как сведения об архитектонике молекулы (число и относительное расположение разветвлений, природа и размеры внутренних и внешних цепей), так и данные о последовательности моносахаридов на каждом конкретном участке молекулы полимера. Нельзя не отметить, что задача установления общего плана построения полимерной молекулы при выяснении первичной структуры белков и нуклеиновых кислот (биополимеров с единственным типом межмономерной связи) не ставится и является характерной для полисахаридов, приобретая особое значение в случае смешанных углеводсодержащих биополимеров. В настоящее время для решения этой задачи применяют фрагментацию полисахаридной цепи на олигомеры посредством частичного расщепления гликозидных связей. Методы установления строения низших олигосахаридов, получаемых при такой фрагментации, в настоящее время разработаны достаточно хорошо и применимы к небольшим количествам вещества, но они весьма трудоемки. Поэтому требует внимания разработка прямых физико-химических методов идентификации и установления строения олигосахаридов. [c.633]

    Л егод масс-сиектрометрии используют для идентификации производных не только при анализе полисахаридов методом метилирования, но и при анализе олигосахаридов непосредственно после перевода нх в одно из вышеупомянутых летучих производных [189, 195]. Этим методом могут быть определены молекулярная масса небольших олигосахаридов, а так ке последовательность моносахаридиых остатков и положение гликозидных связей, хотя для этого обычно необходимы сведения о природе входящих в состав олигосахарида мономеров. Основополагающими в этом направлении были исследования масс-спектров метиловых эфиров дисахаридов, выполненные советскими учеными, которыми было показано, что фрагментация обоих моносахаркдных остатков протекает независимо, при этом образуются фрагменты, отражающие природу и последовательность мономерных единиц, и фрагменты, характеризующие положение гликозидной связи [77]. [c.75]


Смотреть страницы где упоминается термин Олигосахариды в природе: [c.147]    [c.120]    [c.156]    [c.523]    [c.524]    [c.59]    [c.211]    [c.240]    [c.205]    [c.424]    [c.440]    [c.505]    [c.156]    [c.366]    [c.480]   
Химия углеводов (1967) -- [ c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Олигосахариды



© 2025 chem21.info Реклама на сайте