Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Воспламенение в газовой фазе

    Важно уметь правильно определить наиболее эффективные места охлаждения резервуаров. Часть корпуса резервуара, смачиваемая жидкой фазой нефтепродукта, нагревается от действия пожара значительно меньше, поскольку жидкость хорошо поглощает тепло. Корпус резервуара выше уровня жидкости нагревается быстро до потери устойчивости, так как содержащаяся в резервуаре газовая фаза имеет незначительную теплопроводность, и тепло сохраняется в металле корпуса резервуара. Поэтому резервуары с нефтью и нефтепродуктами, оказавшиеся в зоне пожара, необходимо непрерывно охлаждать водой выше уровня жидкости. Если на таком резервуаре возникло горение на клапанах (даже на открытых), то внутреннего взрыва не последует, независимо от температуры нагретой стенки резервуара, так как концентрация содержащихся газов будет находиться за пределами воспламенения. [c.146]


    Процесс горения жидкого топлива проходит следующие стадии смешение капель топлива с воздухом, подогрев и испарение, термическое расщепление капель, образование газовой фазы, ее воспламенение и сгорание. Горение можно ускорить, повышая температуру и давление смеси и турбулизируя ее. Мелкое распыление частиц топлива и равномерное их распределение в воздушном потоке приводят к увеличению активной [c.103]

    Процесс горения капли серы зависит от условий сжигания (температура в камере горения и относительная скорость газового потока) и физико-химических свойств жидкой серы (наличие в сере твердых зольных примесей, битумов и др.) и состоит иэ следующих последовательных стадий 1) смешение капель жидкой серы с воздухом 2) прогрев капель серы и их испарение 3) термическое расщепление паров серы 4) образование газовой фазы и воспламенение ее  [c.39]

    В период до воспламенения, в ходе воспламенения и на начальных стадиях горения летучие оказывают прямое влияние, определяя условия протекания процесса, так как для большинства твердых топлив воспламенение начинается в газовой фазе уже выделившихся летучих, которые, быстро выгорая, резко поднимают температурный уровень процесса, обеспечивают устойчивое воспламенение и последующее интенсивное горение коксового остатка (последний может содержать остаточные летучие, иногда в значительных количествах). [c.187]

    Ввиду такой неопределенности реальная структура комплексов обычно лучше всего может быть установлена из совокупности данных о структуре твердой фазы (которые позволяют найти 5 ) и измеренных значений скорости газификации, по которым из формулы (6) может быть определена величина д . Такие измерения могут быть выполнены при горении твердого топлива тогда формула (6) используется при интерпретации результатов, или в случае газификации конденсированной фазы, когда горение в газовой фазе подавлено (например, в случае сублимации при давлениях ниже предела воспламенения). В последнем [c.275]

    Таким образом, процесс горения жидкого топлива проходит следующие стадии смешение капель с воздухом, подогрев и испарение, термическое разложение (расщепление), образование газовой фазы и воспламенение и завершение окисления (горения) газовой фазы. Стадии эти неотделимы одна от другой и в какой-то мере совмещаются. [c.36]

    Гетерогенными факторами указанного типа обусловлены также следующие закономерности цепного горения изотермическое многократное самовоспламенение в замкнутом объеме, новые критические явления внутри области воспламенения в изотермическом режиме, изотермическое гетерогенное распространение пламени, гистерезис кинетики цепного процесса, индукция одной цепной реакцией другой реакции из-за участия адсорбированных носителей цепей, гетерогенное разветвление цепей, приводящее к локализации изотермического пламени у поверхности даже в условиях, когда обрыв цепей происходит в основном на поверхности, выход атомов кристаллической решетки в газовую фазу под воздействием носителей цепей и т. д. Обнаруженные закономерности присущи всему классу разветвленных процессов, т. е. имеют общий характер. Очевидно, что указанные факторы действуют и в неизотермических условиях. [c.429]


    Можно выделять три типа воспламенения в газовой фазе, в твердой фазе и гетерогенное [137]. Однако наиболее ценной, по-видимому, была бы теория, учитывающая одновременное протекание реакций в твердой фазе, на поверхности и в газовой фазе, попытка создания которой предпринята в работе [14]. Теории воспламенения в газовой фазе основаны на предположении, что процесс воспламенения определяется реакциями между газифицированными горючим и окислителем, включая и возможные реакции с атмосферным кислородом. Считается, что тепловыделение в газовой фазе способствует ускорению реакций и продвижению процесса воспламенения. Задача состоит в совместном решении уравнений для твердой и газовой фаз. Критерий воспламенения, используемый в таких теориях, зависит от распределения температуры и скоростей реакций в газовой фазе. [c.84]

    Теории воспламенения в твердой фазе не учитывают тепловыделение и диффузию в газовой фазе. Считается, что повышение температуры в топливе вызывается тепловыделением в реакциях, протекающих в глубине заряда, и/или благодаря нагреву внешними источниками. В критерии воспламенения также требуется достижение критической температуры или некоторого критического градиента температуры. [c.85]

    ЦИЯ твердой фазы. Химические реакции могут протекать в газовой фазе (между газифицированным горючим и воздухом или газифицированным окислителем), на поверхности (гетерогенная реакция) либо под ней. Некоторые реакции — экзотермические, а другие — эндотермические. Для надежного воспламенения ТРТ тепло, выделяемое в химических реакциях, должно превышать тепловые потери. При этом происходит повышение температуры твердой и газовой фаз и, кроме того, часто наблюдается свечение. Наконец, устанавливается стационарный режим, который характеризуется высокими значениями скоростей химических реакций и тепловыделения. [c.84]

    Таким образом, низкотемпературные режимы теплового воздействия описываются твердофазной теорией воспламенения, высокотемпературные режимы — газофазной теорией, хотя четкой границы по интенсивностям не существует. В настоящее время намечается тенденция к созданию общей теории, которая учитывала бы экзотермические превращения как в конденсированной, так и в газовой фазе. Трудности создания такой теории обусловлены отсутствием полной физической картины воспламенения, особенно при высоких интенсивностях. [c.113]

    По мере возрастания давления над первым пределом воспламенения реакция остается взрывной по своему характеру до тех пор, пока не будет достигнуто второе критическое давление, при котором взрывной режим реакции меняется на стационарный. Согласно теоретическим представлениям, второй предел не зависит от свойств реакционного сосуда только в том случае, когда поверхность сосуда поглощает основную часть радикалов НОз, которые, таким образом, не возвращаются в газовую фазу и не участвуют в реакции с водородом [c.200]

    В начале своего развития теория теплового взрыва применялась главным образом к воспламенению газовых смесей. В такого рода примерах есть все основания считать температуру стенки заданной и постоянной независимо от условий ее охлаждения. Это связано просто с тем, что теплоемкость твердого тела настолько больше теплоемкости газа, что даже всего тепла, выделяющегося при газовом взрыве, хватило бы только на незначительное повышение температуры стенки. Иначе обстоит дело для взрыва конденсированных фаз, где теплоемкости реагирующей среды и стенки одного порядка. В этом случае в стенке должно установиться стационарное распределение температур и температура на внутренней поверхности стенки не может считаться заданной, но должна быть определена из комбинированного граничного условия  [c.335]

    Сам процесс воспламенения во всех без исключения случаях протекает в газовой фазе, так как реакции между горючим и окислителем идут с высокими скоростями лишь при достаточно хорошем взаимном смешении компонентов в определенных соотношениях, не очень сильно отличающихся от стехиометрического. При воспламенении аэрозолей из углеродистых материалов сначала происходит нагревание пылевидных частиц до начальной температуры распада, затем их газификация и диффузионное смешение горючих газов с воздухом и только после этого воспламенение в газовой среде. Воспламенение распыленных частиц жидкого горючего аналогично воспламенению аэрозолей с твердыми частицами, с той лишь разницей, что возгонка и газификация твердой фазы в этом случае заменяются испарением горючего с поверхности частиц. [c.94]

    На этих двух стадиях твердое горючее рассматривается как инертное, не участвующее в реакции, тело. Энергетическая характеристика процесса воспламенения определяется, в основном, физикохимическими свойствами твердой фазы и интенсивностью теплового потока от источника зажигания [166]. Не исключается и само ускоряющаяся реакция окисления, приводящая к воспламенению непосредственно на поверхности твердого вещества, или одновременное протекание реакций на поверхности твердого вещества и в газовой фазе. [c.100]


    Опыты со скрещенными струями, как видим, действительно убедительно показали, что твердая поверхность зарождает гомогенное воспламенение. Тем не менее эти опыты оказались недостаточными для опровержения точки зрения, согласно которой воспламенение зарождается в газовой фазе. К такому же результату привела работа, выполненная автором частично в лаборатории Писаржевского в 1924 г, и частично в лаборатории Семенова в 1928 г.  [c.328]

    Если в первые годы разработки цепной теории основное внимание уделялось главным образом изучению быстрых цепных разветвленных реакций в газовой фазе, приводящих к воспламенению реагирующей смеси, то в дальнейшем все больший и больший интерес вызывали медленные цепные процессы с вырожденными разветвлениями цепей [1,2]. [c.375]

    Так, произошел взрыв на технологической линии на установке изомеризации пентана в газовой фазе на неподвижном катализаторе. Взрывом были разрушены ресивер, фил .тр и другое оборудование на линии компримирования и подачи водорода в систему изомеризации. Как было установлено,, через неплотности на всасывающей стороне водородного компрессора в систему проник воздух, что и привело к образованию взрывоопасной смеси с водородом и другими горючими газами. Неплотности были в продувочном вентиле и предохранительном клапане, установленных на трубопроводе между ресивером и водородным компрессором. Воспламенение взрывоопасной водородо-воздушной смеси произошло при контакте нагретой пыли катализатор-ной массы, уносимой из контактных аппаратов и осевшей в трубопроводах циркуляционного газа изомеризации. [c.270]

    Основная область научных работ— химическая кинетика. Установил (1921) механизм гомогенного мономолекулярного разложения многоатомных молекул. Обнаружил (1928—1931) явления предела воспламенения водорода в смеси с кислородом и объяснил их на основе цепных реакций как результат обрыва цепей. Исследовал (1920—1930-е) механизм многих гомогенных и гетерогенных процессов, установив разветвление цепей, роль стенок н других неспецифических катализаторов в изменении скорости реакций. Занимался (с 1938) изучением процесса роста бактерий в питательных средах, выявив зависимость скорости роста от концентрации двуокиси углерода в газовой фазе, присутствия токсинов, аминокислот и других веществ. Получил количественные зависимости, характеризующие метаболизм, наследственные изменения и размножение одноклеточных организмов. [c.541]

    В связи с этим обеспечить взрывобезопасность процесса фиксированием содержания углеводородов вне их пределов взрываемости практически невозможно. Дополнительную сложность в стабилизации содержания горючего на безопасном уровне вносят такие трудно контролируемые факторы, как пропуск в теплообменниках нефть — гудрон на АВТ, неполное отделение легких углеводородов на деасфальтизации, образова--ние лепких углеводородов в процессе окисления и при повышении температуры в нижней части вакуумной колонны (легкий крекинг), что практически обусловливает непредсказуемость состава газовой фазы. Содержание углеводородов в этой фазе может меняться в широких пределах — от 0,12 [263] до 4% (об.) [283]. В соответствии с ГОСТ 12.1.004—76 ( Пожарная безопасность ) нижний концентрационный предел воспламенения снижается с утяжелением углеводородного топлива следующим образом 1% (об.) для бензинов, 0,6% (об.) для керосинов и 0,3—0,4% (об.) для дистиллятных масел с молекуляр- -ной массой 260—300. Молекулярная масса отгона — 250 [262] (260 [2]) — близка к молекулярной массе дистиллятных масел, поэтому нижний концентрационный предел его можно принять в пределах 0,3—0,47о (об.). Для определения безопасной концентрации отгона необходимо (в соответствии с названным стандартом) учесть влияние температуры и коэффициента безопасности. Температурный фактор оценивается lio формуле [c.175]

    Образующийся при окислении углерода монооксид может доокис-ляться в газовой фазе. Гомогенное окисление СО относится к радикальным реакциям с разветвленно цепным механизмом [71, 72]. Фундаментальную роль в механизме протекания этого процесса играют радикалы ОН. Поэтому добавление к СО в небольших количествах паров воды, водорода или углеводородов приводит к снижению температуры воспламенения смеси СО и О на десятки и даже сотни градусов [71]. К сожалению, основные исследования процесса окисления монооксида углерода проведены в интервале значений параметров, не характерных для условий процесса окислительной регенерации катализатора. [c.24]

    Наиболее опасные свойства СНГ связаны с тем, что их газовая фаза в смеси с воздухом в пределах 1,8—10 % легко воспламеняется при повышении ее температуры до 500 "С от теплового воздействия или источника электроэнергии. Вытекающие из емкости СНГ мгновенно диффундируют и смешиваются с кислородом воздуха до необходимых для воспламенения соотношений и, если находится источник воспламенения, мгновенно загораются. При определенных объемах, температуре, давлении и степени заполнения СНГ вытекающая газовая фаза может сгорать со взрывом. Газовоздушная смесь может воспламениться при содержании в ней газа менее 2 %, а жидкость при испарении выделяет газ в соотношении 1 250. Это создает угрозу распространения газов на больших пространствах при очень незначительных утечках жидкости (12 тыс. объемов воспламеняемой смесц на 1 объем жидкости) и практически всегда приводит к взрыву расширяющейся кипящей жидкости. [c.170]

    Второй период в развитии исследования газофазного окисления углеводородов продолжался с конца 20-х и до середины 30-х годов нашего столетия. В этот промежуток времени окисление углеводородов было рассмотрено с точки зрения цепного протекания этого процесса. Оказалось, что медленное взаимодействне углеводородов с кислородом в газовой фазе представляет собой цепную реакцию, протекающую с вырожденными разветвлениями. Таким образом, был сформулирован кинетический механизм этой реакции. Одновременно были открыты новые факты, значительно изменившие предполагаемую до того феноменологию окисления высших углеводородов. Здесь имеется в виду открытие явлений трех пределов воспламенения по температуре и давлению, холодных пламен и отрицательного температурного коэффициента скорости окисления. Остановимся на результатах, достигнутых в этот второй период. [c.43]

    На поверхности нелетучего нефтепродукта (с температурой вспышки и воспламенения выше начальной рабочей температуры) механизм распространения пламени сходен с механизмом распространения диффузионного пламени по поверхности твёрдого горючего материала, когда в нормальных температурных условиях горючая газовая фаза на поверхности топлива отсутствуёт, а взоникает постепенно вследствие подогрева топлива непосредственно перед движущимся фронтом пламени (рис. 2,1). Основному пламени предшествует небольшое горизонтальное пульсирующее пламя. Очевидно, ведущий край пульсирующего пламени соответствует температуре вспышки, а фронт установившегося основного пламени—температуре воспламенения нефтепродукта. Начальное кратковременное продвижение пламени совпадает с нагревом поверхности жидкости до температуры вспышки, но скорость поступления паров оказывается недостаточной для поддержания непрерывного горения, и фронт пламени возвращается в область устойчивого горения. Когда концентрация пара в зоне подогрева перед пламенем достигает уровня, соответствующего температуре воспламенения, фронт пламени продвигается. Скорости распространения пламени по поверхности нелетучих нефтепродуктов малы. [c.13]

    Термоокисление газообразных загрязнителей может происходить в газовой фазе ( в объеме) или на границе раздела фаз (на поверхности). Газофазный процесс осуществляют непосредственной огневой обработкой (сжиганием в пламени) газовых выбросов при темературах, превышающих температуру воспламенения горючих компонентов выбросов. Для организации процесса окисления на границе раздела фаз используют катализаторы - конденсированные вещества, способные за счет активности поверхностных частиц ускорять процесс окисления того или иного загрязнителя при температурах ниже температуры воспламенения. [c.411]

    Горение полимеров в большей степени зависит от нехимических факторов, таких, как турбулентность газовой фазы, кондуктив-ная, конвективная и радиационная теплопередача, а также характеристики испарения и плавления составляющих. Эксперименты обычно начинаются с того, что образец полимера нагревают внешним источником и по достижении достаточно высокой температуры, зависящей от воспламеняемости материала, происходит воспламенение, которое, в зависимости от окружающих условий и механизма тепловой обратной связи, может закончиться полным сгоранием образца. В таком процессе горения большая часть тепловой обратной связи обеспечивается теплопроводностью, хотя возможен вклад и радиационного теплообмена. [c.67]

    В обзоре [99], посвященном обсуждаемой проблеме, для описания модели воспламенения используются следующие уравнения уравнения сохранения энергии в твердой и газовой фазах, неразрывности, уравнения баланса энергии, состава смеси и потока массы на поверхности. Авторы обзора дают характеристику 15 моделей воспламенения в газовой фазе, 8 — гетерогенных и 16 — в твердой фазе сделаны также критические замечания относительно этих моделей. Назовем имена ученых, внесших важный вклад в изучение проблемы. В США это Саммерфилд, Германе, Ф. Вильямс, Райан, Бэр, Куо и Андерсен, а из их советских коллег наиболее известен Мержанов  [c.85]

    Исследовалось влияние катализаторов на воспламенение и горение твердого топлива на основе ПХА [94]. Металлические катализаторы, такие, как СиО, СГ2О3, РегОз, МпОг и КМПО4, повышают порог горения ПХА по давлению, тогда как разлагающиеся соли аммония (такие, как ЫН4С1) ингибируют горение ПХА. Каталитическое действие солей металлов на связующее, как правило, сводится к ускорению окисления НС. Что касается твердых топлив, то скорость их горения возрастает при добавлении в рецептуру РегОз, производных ферроцена, хромата меди и других соединений переходных металлов. Существуют разные точки зрения на механизм каталитического действия этих присадок, поскольку катализаторы могут оказывать влияние на реакции в газовой фазе, на подповерхностные реакции в твердой фазе и на реакции на поверхности как по отдельности, так и одновременно. Известно, что эффективность катализатора меняется в зависимости от его типа, концентрации, размера его частиц и давления. [c.86]

    Газофазная теория. Наиболее простым подходом к построению газофазной теории является подход Зельдовича [43], который основан на механизме горения летучих ВВ [5], имеющих четко выраженную температуру газификации, равную температуре кипения. В этой теории принимается, что за счет энергии источника тепла происходит прогрев вещества до температуры газификации. Начиная с этого момента, вещество газифицируется, и основная реакция, приводящая к воспламенению, протекает в газовой фазе на некотором расстоянии от поверхности. Необходимым условием воспламенения является создание в конденсированной фазе прогретого слоя, глубина которого должна быть такой, чтобы обеспе-тать необходимый критический градиент температуры у поверхности [теория Зельдовича вкратце нами уже рассматривалась при выводе условий поджигания стенок поры ( 14)]. В ней не учитывается тепловыделение в конденсированной фазе, а также гидродинамическая картина в окружающей среде. Однако теория рассматривает вопрос перехода от воспламенения к устойчивому горению. Представления Зельдовича в дальнейшем развивались в работе [102]. В настоящее время делаются попытки усовершенствовать данную модель (применительно к смесевым порохам) с учетом, например, процессов диффузии окислителя и горючего. [c.112]

    Воспламенение трещины в манометрической бомбе соответствует условиям интенсивного подвода тепла, когда существенную роль играют процессы в газовой фазе. В этом нас убеждает факт снижения задерн ки воспламенения с ростом давления, а также оценка величины теплового потока. Для входной части трещины тепловой поток, рассчитанный из выражения д = а (Г — Тст) (а — коэффициент теплоотдачи, который вычислялся на основе критериальной зависимости Нуссельта [ИЗ] Г — температура фильтрующихся газов, которая принималась равной температуре сгорания воспламенителя Гст — средняя температура стенки), составил при р , = 50 атм, d(, = 0,1 мм величину д 200 кал см -сек. Измеренная экспериментально для этих условий задержка воспламенения смесевого норохя оказалась равной 5 мсек. [c.123]

    Воспламенение частиц алюминия на ранних стадиях процесса горения (1300 К) можно объяснить не фазовым переходом плавления АЬОз, а скорее всего растреокиванием и частичными разрывами окисной оболочки парами металла и диффузией последних в газовую фазу. Этому в определенной мере способствует различие в коэффициентах объемного расширения металла и окисла (Ра1= = 33,5-10-6 K- в интервале Г=320ч-1300 К, =8,6-10-6 К" в интервале 7=8004-900 К). Относительные размеры зон горения частицы алюминия (6 = / факела/ частич) были оценены с помощью скоростного фотографирования горящей частицы и методом отбора ее из пламени на определенном расстоянии от поверхности горения (/г = 5 мм). Величина г] в интервале давлений 2—6 МПа для частиц размером 40 мкм изменялась в пределах 1,6—1,4. [c.292]

    Процесс горения жидкого топлива проходит следующие стадии смешение капель топлива с воздухом, подогрев и испарение, термическое расщепление капель, образование газовой фазы, ее воспламенение и сгорание. Горение можно ускорить, повышая температуру, давление и создавая турбулизацию смеси. Мелкое распыление частиц топлива и равномерное их распределение в воздушном потоке увеличивают активную поверхность реакции, облегчают нагрев и испарение частиц и способствуют процессу быстрого и полного горения. Наиболее благоприятно протекает процесс смешения и разложения топлива в случае подвода всего воздуха для горения к основанию факела. Сгорание топлива должно заканчиваться в топочной камере без залетания факела в конвекционную секцию. Дымление при сгорании должно быть минимальным. Чрезмерно ослепительное пламя свидетельствует о повышении избытка воздуха. Искрение пламени указывает на содержание в жидком топливе твердых частиц, темно-красные продольные полосы — на плохое распыливание, а общее потемнение и краснота пламени — на недостаток воздуха. [c.43]

    Гомогенная и гетерогенная стадии химических реакций. Для выяснения механизма химической реакции и природы входящих в него отдельных элементарных процессов весьма существенное значение имеет вопрос о том, протекает ли данная реакция целиком в гомогенной (газовой) фазе и какое влияние на течение реакции оказывают гетерогенные факторы. В случае газовых реакций таким фактором чаще всего является стенка реакционного сосуда. На значение стенок реакционного сосуда (в частности, относительной величины их поверхности и их материала) для кинетики химических газовых реакций первый обратил внимание Вант-Гофф [37] (1884), хотя отдельные наблюдения действия стенок на химическую реакцию отмечались и раньше. Изучая реакцию полимеризации хщановой кислоты НСМО в стеклянных сосудах с поверхностью различной величины, Вант-Гофф нашел, что скорость реакции в сосуде с большей поверхностью заметно больше скорости реакции в сосуде с меньшей поверхностью. Он, далее, установил, что предварительное покрытие стенок реакционного сосуда циамелидом — продуктом полимеризации цианово1г кислоты — приводит к увеличению скорости реакции более чем в три раза. Сильное влияние природы стенок на скорость реакции было замечено Вант-Гоффом также в случае окисления гремучей смеси 2Н2-Ь02 (прн 440° С). В последующие годы влияние величины поверхности и природы (материала и характера обработки) стенок на скорость химической реакции было установлено для многих реакций, протекающих в газовой фазе. Оказалось, что в одних случаях стенка тормозит реакцию, в других — ее ускоряет. Известны также случаи двоякого действия стенки, когда стенка благоприятствует реакции и действует тормозящим образом в той же реакции. В качестве одного из примеров здесь можно привести действие стенки в реакции горения водорода. Вводя в зону горения тонкие стерженьки из различных материалов, А. Б. Налбандян и С. М. Шубина [2041 обнаружили при этом резкое замедление реакции. С другой стороны, Алиа и Габер [315] показали, что воспламенение водорода в месте скрещения горячих струй водорода и кислорода (нагретых до 7 < 540° С) при давлении в несколько десятков миллиметров ртутного столба происходит лишь при внесении в газ тонкого кварцевого стерженька Таким образом, нужно заключить, что твердая иоверхиость способствует возникновению реакции горения водорода и тормозит уже идущую реакцию. Укажем, что согласно [c.50]

    Особенности использования сжиженных газов. Сжиженные газы (пропан, бутан, этилен и др.) по ряду причин опасны в экотлуатащии. Они тяжелее воздуха и могут скапливаться в ивких местах территории. Их ижн ий конаднтращионный предел воспламенения очень и изок (от 1,6 до 3,0% об,), а минимальная энергия воспламенения мала, поэтом у они очань взрывоопасны. Сжиженные углеводородные газы имеют высокий коэффициент объемного расширения, поэтому со- суды с ними должны заполняться не полностью, а так, чтобы оставался свободный объем для газовой фазы. При стравливании сжиженные газы вследствие дросселирования испаряются с резким снижением темпера- [c.221]

    Как отмечалось выше, горение твердых веществ протекает на поверхности и в газовой фазе около нее. Поэтому в горящем аэрозоле теплота сгорания концентрируется главным образом в конденсированной фазе, где развивается более высокая температура. Это подтверждается расчетом теплоты сгорания смесей пылей с воздухом при минимальных взрывоопасных концентрациях. За счет этого тепла температура смесей может повыситься лишь на 100—200 °С [44]. Такое повышение температуры недостаточно для воспламенения аэрозоля, поскольку не обеспечивает нужного для зажигания частиц нагрева. [c.54]


Смотреть страницы где упоминается термин Воспламенение в газовой фазе: [c.196]    [c.26]    [c.36]    [c.84]    [c.86]    [c.112]    [c.371]    [c.57]    [c.73]   
Ракетные двигатели на химическом топливе (1990) -- [ c.84 ]

Ракетные двигатели на химическом топливе (1990) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая фаза



© 2025 chem21.info Реклама на сайте