Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния железе

    Бронзы безоловянные. Метод спектрального анализа по стандартным металлическим образцам с фотоэлектрической регистрацией спектра Лигатура медно-бериллиевая. Спектральный метод определения магния, железа, алюминия, кремния и свинца [c.821]

    Вращающийся электрод использовали при определении магния, железа, кремния и марганца в металлическом титане [34] для определения щелочноземельных металлов в концентрации 5-10 % [c.137]


    Раствор после электролиза может быть использован для определения магния, железа, никеля, титана и др. [c.66]

    Осаждение оксихинолином применяют для определения магния в присутствии алюминия и железа без предварительного отделения этих элементов, а также для определения магния в присутствии кальция. В первом случае магний осаждают оксихинолином из щелочного (N OH) раствора, содержащего виннокислые соли. Железо и алюминий образуют в щелочном растворе с виннокислым натрием устойчивые комплексные соединения, из раствора которых оксихинолин не осаждает этих элементов. Отделение от кальция основано на сравнительно хорошей растворимости оксихинолината кальция в горячем аммиачном растворе, в то время как оксихинолинат магния при этих условиях не растворяется. Последний метод не имеет особых преимуществ по сравнению с обычным методом отделения магния от кальция, так как и в этом случае требуется двукратное [c.398]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Пример 1. Сотрудником лаборатории была разработана схема анализа редкого минерала уранинита с использованием комплексонометрического метода конечного определения основных компонентов- минерала урана, свинца, тория и суммы редкоземельных элементов. Схема, отработанная на искусственных смесях, учитывала возможность присутствия в уранините малых количеств кальция и магния и включала этап их совместного выделения и последующего раздельного. комплексонометрического определения. Данные предварительного эмиссионного спектрального анализа естественного образца уранинита, представленного для апробирования разработанной схемы, подтверждали наличие в его составе высоких содержаний урана, свинца, тория и редкоземельных элементов, а также небольших (0,3—0,8%) количеств магния, железа и алюминия. Кальций методом эмиссионного спектрального анализа в образце минерала обнаружен не был. Однако при неоднократных анализах по разработанной схеме он уверенно обнаруживался, хотя и в небольших количествах (0,2—0,4 %). Поскольку чувствительность метода эмиссионного спектрального определения кальция несомненно выше, чем комплексонометрического, следовало признать, что разработанная схема содержала систематическую погрешность привнесения кальция извне на каких-либо этапах анализа. [c.58]


    Полным анализом воды условно называют ее исследование, включающее определение следующих показателей и веществ цвет, запах, вкус, наличие и вид осадка, сухой и минеральный (а иногда и сульфатный) остатки, концентрация взвешенных веществ, жесткость, щелочность, окисляемость, концентрация кальция, магния, железа, алюминия, иатрия (иногда и калия), хлоридов. [c.409]

    При определении энергии водородных связей, образуемых водой с анионами в кристаллогидратах,, в ряде случаев мы столкнулись с трудностью выбора частот для этих целей. Трудность эта была связана с тем, что в области валентных ОН-колебаний наблюдалась сложная картина спектра В частности, это имело место в случае семиводных сульфатов магния, железа и цинка, для ко- [c.72]

    Протекаемость диафрагмы изменяется особенно сильно в первое время после начала фильтрования. В зависимости от условий в период от нескольких дней до 1—2 нед.. происходит так называемое формирование диафрагмы, после чего ее свойства в течение длительного времени остаются примерно постоянными. При этом вследствие набухания волокон свойства диафрагмы медленно меняются [67]. В результате протекания процессов изменения структуры асбестовой диафрагмы и постепенного загрязнения ее графитовым шламом, гидроокисями магния, железа, солями кальция и другими примесями протекаемость диафрагмы уменьшается и по истечении определенного времени становится недостаточной для поддержания концентрации щелочи в допустимых пределах. Чтобы избежать резкого снижения выхода по току, необходимо произвести смену или регенерацию диафрагмы. [c.46]

    Определение солей железа в соединениях магния. Поступают, как указано выше, но перед прибавлением раствора аммиака к раствору препарата прибавляют 0,5 мл раствора хлорида аммония. [c.170]

    Что такое фактор пересчета и как его определяют 4. Как определяют барий осаждением сульфат-ионом 5. Как определяют железо осаждением аммиаком 6. В чем состоит особенность определения магния осаждением гидрофосфатом аммония 7. Как определяют никель осаждением диметилглиоксимом  [c.123]

    Для определения содержания железа применяют комплексонометрическое титрование. В качестве индикатора используют сульфосалициловую кислоту или роданид аммония. Титрование проводят при pH 2—3. Медь, цинк, магний, марганец, определению не мешают. [c.223]

    Этот метод удобен для регулярных анализов. Он применим для определения магния в металлическом титане, титановой губке и сплавах, содержащих до 5% алюминия, молибдена и олова. С успехом можно анализировать и титановые сплавы, содержащие до 1 % железа и 0,5% хрома. Метод используется для анализа сплавов, содержащих количества железа и хрома, вдвое превышающие указанные выше допустимые пределы, но начальную навеску пробы или аликвотную часть раствора необходимо вдвое уменьшить. [c.53]

    Карбонаты кальция, магния, железа, марганца и других металлов, как известно, при нагревании до определенных температур разлагаются на оксиды металла и углекислый газ. [c.123]

    К анализируемому раствору прибавляют несколько капель НКОз (уд. вес. 1,4) для окисления железа, раствор нейтрализуют аммиаком до появления мути, которую растворяют прибавлением по каплям НС1 (1 1). В зависимости от количества осаждаемых элементов прибавляют 20—40 мл 30%-ного раствора уротропина, нагревают до 80° С и выдерживают при этой температуре в течение 10—15 мии. Раствор с осадком переносят в мерную колбу емкостью 250 мл, доводят водой до метки и перемешивают. Фильтруют через сухой фильтр, первые порции фильтрата отбрасывают, из следуюш их порций отбирают аликвотную часть для определения магния [184]. [c.38]

    Во многих методах определения магния мешают фосфат-ионы, поэтому их предварительно удаляют либо в виде труднорастворимых фосфатов железа или циркония, или же методом ионообменной хроматографии. [c.45]

    Железо, чугун, стали. Железо и его сплавы дают весьма сложные спектры, поэтому при определении магния в железе, чугуне, сталях и в рудах железа выбор линий магния весьма ограничен. На многие линии магния налагаются интенсивные линии железа. [c.168]

    Магний в чугуне можно определять также фотометрическим методом с титановым желтым [259]. Железо и некоторые примеси отделяют бензоатом натрия. При содержании 0,02—0,05% магния относительная ошибка метода в пределах 10—20%. Об определении магния с титановым желтым в углеродистых и низколегированных сталях, а также в сплавах на хромовой основе см. в [13]. [c.209]

    Для определения магния в чугуне описаны фотометрические методы с эриохром черным Т [64, 1081]. По одному из них [64], магний определяют после отделения основной массы железа экстрагированием метилизобутилкетоном из 6 iV H I и осаждения А1, Ti, Сг, Са и остатков железа в виде оксалатов и маскирования тяжелых металлов цианидами. Метод не очень удобен, так как включает в себя несколько операций отделения и связан с применением токсичных цианидов. По другому методу [1081], тяжелые металлы отделяют осаждением в виде оксихинолинатов, затем следы металлов удаляют экстракцией их диэтилдитиокарбаминатов метод очень продолжительный и мало приемлем для массовых анализов. [c.209]


    Описано [882] определение магния в чугуне фотометрией в пламени смеси ацетилена и воздуха после удаления железа экстрагированием этиловым эфиром. [c.210]

    Сплавы цинко-алюминиевые. Спектральный метод анализа Магний первичный. Спектральный метод определения натрия и калия Магний первичный. Спектральный метод определения кремния, железа, никеля, алюминия, меди, марганца и титана [c.821]

    Литий. Метод определения магния, марганца, железа, алюминия, кремния, бария [c.584]

    Лантан, церий, европий, гадолиний, лютеций, иттрий и их окиси. Спектральный метод определения ванадия, железа, кальция, кобальта, кремния, магния, марганца, меди, никеля, свинца, титана, хрома, цинка и циркония [c.589]

    Важным примером использования в количественном анализе катионного обмена является отделение анионов 501 от различных катионов. Так хроматографический метод определения серы в пиритах основан на поглощении трехвалентного железа катионитом. Выходящую из колонки серную кислоту можно легко определить обычным весовым способом в виде сульфата бария. Аналогично можно определить фосфаты в ( юсфоритах, поглощая кальций, магний, железо и алюминий катиони- [c.145]

    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]

    Во второе издание книги внесены следующие изменения и дополнения 1) согласно учебной программе, включены новые разделы Кальций , Магний и Фосфор 2) предусмотрено применение посуды из стеклоуглерода вместо дорогостоящей — платины 3) приведена методика определения меди в сплавах способом внутреннего электролиза с использованием катодов в виде тигля из стеклоуглерода (методика разработана преподавателями МИСиС В. П. Гладышевым и Л. 3. Козель) 4) приведен ряд новых методик (например, определения свинца, железа) некоторые методики исключены. [c.4]

    Предложено потенциометрическое титрование кальция комплексоном III проводить с угольным и платиновым электродами [39]. Угольный электрод из спектральночистого материала в дан-пом случае является индикаторным, платиновый — электродом сравнения. Поскольку угольный электрод реагирует на концентрацию ионов водорода в растворе, а раствор комплексона III обычно резко изменяет pH, титруют в среде хлоридно-аммиачного буфера в присутствии раствора едкого натра. Такая среда препятствует осаждению гидроокиси магния, которая снижает чувствительность электрода. Титрование возможно в присутствии хроматов, сульфатов и хлоратов. Мешают определению кальция железо и алюминий. [c.74]

    В анализируемом растворе окисляют железо азотной кислотой. Далее после нейтрализации раствора проводят осаждение уротропином, как указано выше. Раствор с осадком переносят в мерную колбу емкостью 250 мл, охлаждают холодной водой под краном до комнатной температуры, добавляют 20 мл 2%-ного раствора диэтнлдитиокарбамината натрия, доводят водой до метки и перемешивают. Фильтруют через сухой фильтр с синей лентой (иногда осадок диэтилдитиокарбаминатов проходит сквозь фильтр, при определении магния комплексонометрическими методами на это не следует обращать внимания). Первые порции фильтрата отбрасывают, из следуюш их порций отбирают аликвотную часть для определения магния. [c.38]

    Описанный метод ранее (до появления комплексонометрических методов) очень широко применялся для определеиия мапшя в самых разнообразных материалах. В частности, описано определение магния в чугуне [447, 673], в алюминиевых сп.ттавах [321, 532, 706], в портланд-цементе [542], в лигатурах мапшя с железом и кремнием [116]. [c.100]

    Иногда прибегают к отделению основного компонента теми или иными методами. Например, при определении магния в металлических 2г, Ге и Си предварительно отделяют 2г осаждением в виде миндалята, Ге — экстракцией эфиром хлоридного комплекса, Си — электролизом [704]. Для выделения малых количеств магния применяют методы соосаждения, например соосаждают магний на оксихинолинате железа [704]. [c.166]

    Определению магния при 285,2 нм кальций до концентрации 100 мкг мл практически не мешает [747, 875], до 0,5 мгС мл влияет очень мало Ка, К и при концентрации до 1 мг мл вызывают незначительную ошибку [860, 925]. При 371 нм влияние Ка, К и Са сильнее, чем при 285,2 нм. Отделить магний от указанных металлов нелегко, поэтому рекомендуют вводить поправку на щелочные металлы и кальций, для чего нужно знать их содержание в анализируемом образце. При 371 нм 100 мкг мл Ка, К и Са эквивалентны 3 мкгШglмл. При % = 379 нм, при которой рекомендуют проводить измерения в присутствии значительных количеств железа (при 379 нм помехи со стороны железа меньше,чем при 371 нм), 100 мкг/мл К и Са эквивалентны 4 мкг l g/мл, 100 мкг а./мл — 8 мкг/мл [544]. [c.184]

    Сравнительно редко используют для определения магния его молекулярную полосу с максимумом при 383 н.и. По данным из работы [1090], при определении — 3% магния при 383 нм не мешает до 0,2% железа влияние больших количеств его можно устранить введением H IO4 до концентрации 0,125 N. Марганец при 383 нм усиливает излучение раствора, влияние Na и Са ничтожно. [c.185]

    Редкоземельные металлы и их окиси. Спектральный метод определения ванадия, железа, кобальта, кремния марганца, меди, никеля, свинца, титана, хрома Лантан, церш4, европий, гадолиний, лютеций, иттрий и их окиси. Спектральный метод определения ванадия железа, кальция, кобальта, кремния, магния, марганца, меди, никеля, титана, хрома, цинка и циркония [c.822]

    Руды и промпродукты медно-никель-кобальтового производства. Определение массовых долей меди, никеля, кобальта, железа методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Руды, концентраты, промежуточные и отвальные продукты. Определение массовых долей кремния, алюминия, кальция, магния, железа, хрома, марганца, титана, ванадия, калия и натрия методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Минеральное сырье, руды, продукты их переработки, содержащие свинец, цинк, кадмий и мышьяк. Определение массовых долей свинца, цинка, кадмия и мышьяка методами атомной спектрометрии (ИАЦ РАО Норильский никель ) Никель. Методы химико-атомноэмиссионного спектрального анализа [c.823]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Метод определения сурьмы Метод определения меди Метод определения висмута Метод определения мышьяка Метод определения цинка и меди Метод определения натрия Метод определения железа Метод огфеделенм кальция Метод определения магния Метод определения олова Метод определения теллура Методы определения серебра Методы определения никеля Спектральный метод определения [c.580]

    Методы химического анализа. Определение общей, бикарбонатиой. карбонатной и гидратной щелочности Методы химического анализа. Определение общей жесткости Методы химического анализа. Определение окисляемости маргаице-вокислым калием Методы химического анализа. Определение содержания железа Методы химического анализа. Определение содержания кальция Методы химического анализа, Опреде- тение содержания магния [c.17]

    В 1955 г. Чактержи [12] применил для анализа руды термометрическое титрование из обычной бюретки с использованием термометра Бекмана в качестве температурного датчика. Руду ( 2,5—3 г) вначале растворяли в соляной кислоте. После разбавления раствора к нему прибавляли избыток хлорида аммония и гидроокись аммония до полного осаждения гидроокисей железа (III), алюминия и титана (IV). Затем с помощью уксусной кислоты pH раствора делали равным 4 и объем раствора доводили до 250 мл. Затем аликвотную часть раствора 50 мл титровали 0,5-м. раствором оксалата аммония. После полного осаждения оксалата кальция, что на энтальпограмме отмечается четким изгибом, к анализируемому раствору прибавляли концентрированный аммиак и затем титровали его раствором двузамещенного фосфата натрия и аммония для определения магния по реакции осаждения нерастворимого фосфата магния. [c.75]


Смотреть страницы где упоминается термин Определение магния железе: [c.77]    [c.17]    [c.152]    [c.63]    [c.292]    [c.200]    [c.75]    [c.121]    [c.126]    [c.140]    [c.169]    [c.193]   
Аналитическая химия магния (1973) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение



© 2025 chem21.info Реклама на сайте