Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний линии спектра

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    В первой части книги весьма полно приведены линии спектров 32 элементов, необходимые для анализа важнейших металлов и сплавов. К таким элементам мы отнесли алюминий, ванадий, висмут, вольфрам, железо, золото, индий, кадмий, кальций, кобальт, кремний, магний, марганец, медь, молибден, мышьяк, натрий, никель, ниобий, олово, платину, свинец, серу, серебро, сурьму, титан, углерод, фосфор, хром, церий, цинк, цирконий. [c.11]

    Для тождеств, ядер в отсутствие электрич. и магн. полей спектр представляет собой одиночную линию (рис. 3, а). [c.37]

    Построение градуировочного графика. Подготовку стилометра СТ-7, генератора ИГ-3, электродов, а также установку электродов проводят как указано в работе 1. Включают разряд конденсированной искры напряжение 220 В, емкость 0,005 мкФ, индуктивность 0,55 мкГ, сила тока питания трансформатора 1,0 А (сложная схема). При использовании высокочастотной искры — межэлектродный промежуток 1,0 мм, сила тока питания трансформатора 0,6 А. Устанавливают ширину щели стилометра 0,08 мм. Проверяют полноту освещенности поля зрения окуляра, корректируют резкость спектра и находят спектральные линии гомологической пары. Устанавливают спектральную линию магния внутри рамки, у ее левого края (рис. 1.6,а), перемещая спектр микрометрическим винтом призмы. Рамка при этом, как и спектр, должна быть полностью освещена и находиться в исходном положении. Затем рамку с линией сравнения перемещают влево к линии меди так, чтобы между ними оставалось расстояние в 2—3 ширины спектральной линии (рис. 1.6,6). На месте рамки остается темный вырез. [c.24]

    СДВИГА ПРАВИЛО, см. Радиоактивность. СДВИГАЮЩИЕ РЕАГЕНТЫ (шифт-реагенты, сдвигающие реактивы) в-ва, взаимодействующие с исследуемым орг. соед. (субстратом) и сдвигающие линия спектров ЯМР последнего. В качестве С.р. используют соединение с парамагнитным ионом (в основном или возбужденном состоянии), создающим локальное магн. поле в месте нахождения ядра, резонанс к-рого наблюдают. Вследствие быстрого обмена между свободными и связанными в образующийся комплекс (аддукт) молекулами наблюдаемый спектр является средним между спектрами свободного и связанного субстрата. [c.307]

    Благодаря высокой чувствительности и быстроте выполнения спектральные методы нашли широкое применение в аналитической химии магния. В1 табл. 21 приведены важнейшие линии спектра магния. Наиболее чувствительное определение (1-10 % магния) достигается по линии с К = 2852,13 А (угольная дуга), которая чаще всего используется для его определепия. По линиям с, Х = 2795, 53 2802,69 5172,70 и 5183,62 А в угольной дуге можно определить 1-10 % магния. Из них наиболее часто используются линии с 2795,53 и 2802,70 А, при возбуждении как в искре, так и в дуге. В табл. 22 приведены линии других элементов, мешающие определению магния. [c.167]


    Так, авторы работы [55] испытывали 100-ваттную ксеноновую лампу, излучающую сплошной спектр в области от 230 ммк до 2000 ммк, и не обнаружили флуоресценции пламени. Существенной особенностью атомно-флуоресцентного метода является возможность использования при определении одного элемента источника света, излучающего спектр другого элемента. Так, при освещении паров цезия светом гелиевой лампы возбуждались, как указывают авторы [55], линии Сз 852 ммк., и Сз 388 ммк. Возможным является применение в качестве источников света ртутно-амальгамных ламп, а также электрических дуг и искр. Указывая на эту возможность, авторы [55] ссылаются на работы [57, 60], в которых ртутно-таллиевую лампу применяли для определения таллия по линии Т1 535 ммк. Что касается применения дуги, то имеется в виду работа [60], автор которой обнаружил интенсивную флуоресценцию атомных паров магния (линия Мд 285 ммк), а также заметную флуоресценцию серебра, золота и меди при возбуждении светом угольной дуги, электроды которой содержали небольшие количества указанных металлов. [c.240]

    Магний. Определяется по линиям 2852,13 и 2802,69 А и по характерному спектру, состоящему из пяти линий 2782,97 2781,42 2779,83 2778,29 2776,69 А, появляющихся при содержании в пробе [c.48]

    Структура спектра значительно усложняется, число спектральных линий увеличивается, если источник света поместить в магнит ное или электрическое поле. Так как любая линия в спектре возникает при определенных квантовых переходах, то мультиплетность и тонкая структура спектров вообще доказывают наличие сложных закономерностей, которые существуют при движении электронов в многоэлектронных атомах элементов. Теория Бора была лишь первым шагом на новом пути. Чтобы сделать следующий шаг в познании атома, требовалось в корне изменить представление [c.55]

    Электроды и материалы, применяемые для спектрального анализа руд, минералов, металлов, растворов и т. п., должны быть особо чистыми и не содержать примесей, нарушающих точность анализа. В области от 2000 до 3500 А дугового спектра спектрально чистых электродов допускается присутствие лишь слабых линий следующих элементов бора, кремния, алюминия, магния, меди и титана. Линии остальных элементов должны отсутствовать. [c.58]

    ХИМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ЯДЕР, появление не равновесной ядерной намагниченности диамагнитных молекул, образующихся в результате радикальных р-ций. В спектрах ЯМР этих молекул наблюдается усиление линий испускания или поглощения энергии перем. магн. поля, обусловленное неравновесной заселенностью зеемановских энергетич. уровней (см. Ядерный магнитный резонанс). X. п. я. объясняется тем, что суммарное спиновое состояние неспаренных электронов радикальной пары зависит [c.644]

    Строение внутр. оболочек А., электроны к-рых связаны гораздо прочнее (энергия связи 10 -10" эВ), проявляется лишь при взаимод. А. с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов, нейтронов) на А. (см. Дифракционные методы). Масса А. определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра А. зависят нек-рые тонкие физ. эффекты (ЯМР, ЯКР, сверхтонкая структура спектральных линий, см. Спектроскопия). [c.216]

    Магн. Р. характеризуется меньшей чувствительностью, 1ен электрическая, но ббльшим разрешением линий спектра. Наиб, разрешение (до 5-10 ) характерно для ЯМР, к-рый широко примен. в ммии в ЭПР спектроскопии достигнуто разрешение 1-10 . Активно развиваются смешан-вые двойные и тройные методы типа ЯМР — ЯКР, ЯМР — ЭПР — ЭПР, в к-рых на образец одновременно воздействуют веек, полями с разл. частотами одно из них служит яя регистрации спектра, остальные — для исключения или иодификации соответствующих этим частотам специфич. взаимодействий. В результате упрощается интерпретация сиектра либо суп1ественно повышается чувствительность метода. Область применения ЭПР распространена на диа-маги. системы благодаря использованию стабильных радикалов в кач-ве меток (см. Парамагнитного зонда методу, ЯМР м. б. применен к парамагн. системам (см. Химическая ширишция ядер). [c.491]

    Частные проявления эффектов улучшения разрешения довольно сложным образом связаны с тшюм используемой функции н ее параметрами. При этом возникает следующая общая проблема. Все улучшающие разрешения функции ослабляют начальную часть сигнала ССИ, но в то же время обеспечивают плавное затухание до нуля его конечной части для получения надлежащей аподизацни (гл. 2). Ослабляя одну часть сигнала, мы с необходимостью усиливаем другую, более зашумленную его часть, что в итоге понижает отношение сигиал/шум. Обработка двумерных данных с целью получения желаемого магни-тудного спектра потребует использования весьма жесткого фильтра, поэтому мы должны ожидать большой потери чувствительностн. Другая (н часто более серьезная) проблема состоит в том, что потеря чувствительности будет различной для линий, имеющих в спектре раз- [c.291]


    У магния малолинейчатый спектр (табл. 70). Наиболее интенсивны искровые линии lЛg 2795,53 А 0,001 %) и 2802,70 А (0,001 %) со сравнительно низкой энергией возбуждения (4,4 эв). Первой из [c.234]

    ЯМР. Разрешение спектра ЯМР - миним. ширина линии ЯМР, к-рую позволяет наблюдать данный спектрометр. Скорость прохождения - скорость (в Гц/с), с к-рой изменяется напряженность магн. поля или частота воздействующего на образец радиочастотного излучения при получении спасгра ЯМР. [c.517]

    Магний. Линии магния в спектрах звезд изучал Г. А. Шайн, в спектре Алголя — О. А. Мельников [2] и в спектрах звезд типов В — А. А. Боярчук [10]. [c.121]

    Прямым способом по пламенным эмиссионным спектрам определяют 40 элементов по атомным линиям и молекулярным полосам. Применение косвенных методов позволяет расширить число определяемых элементов. Например, фосфор или алюминий можно определять по гашению излучения щелочноземельных элементов элементы I, И1, Vni групп — по атомным линиям магний, хром, палладий, родий, марганец, щелочноземельные элементы — по молекулярным спектрам монооксидов и моногидроксидов, а также ионов (стронций и барий), бор — по полосам BOj, РЗЭ — по спектрам монооксидов. [c.15]

    Определение магния, кальция, стронция и бария. Аналитические линии этих элементов расположены в основном в видимой и ультрафиолетовой областях спектра. Оксиды и карбонаты этих элементов относятся к тугоплавким соединениям, что обусловливает их медленное испарение. Спектры содержат небольшое число характерных линий, а поэтому присутствие этих элементов в спектре анализируемой пробъ упрощается. Эталонами при количественном анализе служат те же породы, в которых заранее химическим анализом определено их содержание. [c.48]

    В качественном ато.мно-эмиссионмом спектральном анализе в отличие от химического ие требуется сложных операций по групповому разделению элементов. С помощью этого метода можно легко различить два металла с близкими химическими свойствами. Например, неодим и иразеодим при их совместном присутствии идентифицирую1ся с не меньшей простотой, чем алюминий и магний. Результаты анализа в любой момент могут быть проверены путем повторного изучения спектрограммы. Этот метод особенно ценен тогда, когда неизвестен общий химический состав анализируемого вещсства или необходимо обнаружить искомый элемент в пробе. Для выполнения анализа небольшая навеска или капля раствора, нанесенная на торец углеграфитового электрода, возбуждаются электрической дугой, а спектр снимается на фотопластинку или изучается визуально. Присутствие или отсутствие элемента в пробе безошибочно может быть установлено по двум-трем характерным спектральным линиям. Этим методом можно быстро определить один или несколько металлов. Спектральные линии благо-ролных газов, галогенов, серы и некоторых редких тяжелых металлов малочувствительны или для их определения требуются специальные приемы и соответствующая аппаратура, что делает выполнение анализа более сложным, чем химическими методами. [c.665]

    Из свер.хтонкого расщепления в спектре ЭПР можно получить второй ТПП структурной информации. Причина сверхтонкого расщепления тесно свй ана с факторами, которые вызвают спнн-спиновое расщепление в спектрах ЯМР. Некоторые ядра, в частности И, 41 и Р, обладают магнитным моментом. Благодаря относительно малому магнит-пому мамонту энергетические уровни иеспаренного электрона расщепляются. Число линий определяется согласно уравнению Число линий  [c.450]

    Ядро (имеющее заряд и угловой момент) и постоянный магнит-еще два источника магнитного поля, которые удобно описывать в терминах магнитных диполей (рис. 5.5). Вектор ц, использовавшийся в предыдущих главах для обозначения ядерного магнетизма, совпадает с направлением диполя стрелка указывает воображаемый Северный полюс (С). Для наших целей вполне достаточно представлять себе взаимодействие ядер как усиление или ослабление одним ядром поля В , в точке расположения другого (рис. 5.6). Результат этого усиления или ослабления называется локальным полем иа ядре, создаваемым другими ядрами. Ориентация ядерных диполей определяется внешним полем, но их относительные положения зависят от положения молекулы в целом, поэтому локальное поле на ядрах одного типа неодинаково в различных молекулах. В аморфных стеклообразных растворах или в поликристал-лнческих порошках положения отдельных молекул можно считать фиксированными, ио их ориентации не одинаковы, что приводит к образованию целого диапазона резонансных частот и уширению линий. В монокристаллах, напротив, может быть только несколько или вообще одна относительная ориентация диполей, и диполь-дипольное взаимодействие непосредственно проявляется в спектре в виде расщепления линнй, величина которого зависит от ориентации кристалла в магнитном поле. Заметьте, что это прямое магнитное взаимодействие намного превышает обычное скалярное спин-спнновое взаимодействие, но довольно часто превышает н разность химических сдвигов ядер. В результате изменение резонансной частоты может составлять много килогерц. [c.153]

    Прн А.-а.а. необходимо исключить наложение излучения атомизатора на излучение источника света, учесть возможное изменение яркости последнего, спектральные помехи в атомизаторе, вызванные частичным рассеянием и поглощением света твердыми частицами и молекулами посторонних компонентов пробы. Для этого пользуются разл. приемами, напр, модулируют излучение источника с частотой, на к-рую настраивают прнемно-регистрирующее устройство, применяют двухлучевую схему или оптич. схему с двумя источниками света (с дискретным н непрерывным спектрами). Наиб, эффективна схема, основанная на зеемановском расщеплении н поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магн. полю, что позволяет учесть неселектнвные спектральные помехи, достигающие значений /4 = 2, при измерении сигналов, к-рые в сотни раз слабее. [c.217]

    Внеш. магн. поле влияет на выход продуктов р-ции, скорость элементарных процессов взаимод. парамагнитных частиц (рекомбинации радикалов, аннигиляции триплетно-возбужденных молекул, тушения триплетных молекул радикалами и т.п.), интенсивность флуоресценции и хеми-люминесценции, темновую и фотопроводимость мол. кристаллов и орг. полупроводников. Магн. изотопный эффект сопровождается разделением магн. и немагн. изотопов (напр., С и С, о и О). Хим. поляризация электронов и ядер проявляется в спектрах ЭПР и ЯМР продуктов р-ций (радикалов и молекул), при этом положит, поляризация приводит к аномально сильным линиям поглощения, а отрицательная-к линиям эмиссии. В последнем случае создается инверсная населенность зеемановских уровней электронов или ядер (см. Зеемана эффект. Лазер). Когда химически индуцированная отрицат. поляризация ядер достигает значит, величины, превосходящей порог генерации, происходит самовозбуждение радиочастотного излучения и хим. система становится мол. квантовым генератором-хим. радиочастотным мазером. Внеш. высокочастотное резонансное поле стимулирует изменение спина и, следовательно, выхода продукта р-ции или интенсивности люминесценции. Это позволяет регистрировать спектры ЭПР короткоживущих пар парамагнитных частиц по изменению выхода электронов, дырок, возбужденных молекул. На этом принципе основан новый метод магн. резонанса-двойной магн. резонанс (ДМР). [c.624]

    Магнитное дипольное взаимодействие обычно наблюдается в магнитоупорядоченных в-вах (ферро-, антиферро-, ферримагнетиках), в к-рых на ядра действуют сильные магн. поля Н от электронных оболочек. Оио приводит к расщеплению основного и возбужденного состояний ядер, в результате чего в спектре поглощения появляется неск. спектральных линий, число к-рых определяется величинами спинов ядер в этих состояниях и правилами отбора (напр., для ядра Ре равно 6) (рис. 3,г). [c.38]

    МУЛЬТИПЛЁТНОСТЬ (от лат. multiplex - многократный), число квантовых состояний молекулы, различающихся только ориентацией суммарного электронного спина. Для мол. систем, в к-рых спин-орбитальное взаимодействие пренебрежимо мало, состояния с разл. ориентацией спина имеют одинаковую энергию в этом случае М.-кратность вырождения энергетического уровня, обусловленная спином. Вырождение снимается под действием магн. поля, что отражается в спектрах как появление групп спектральных линий (мульти-плетов), в к-рых расстояние между линиями существенно меньше, чем расстояние между группами. Снятие вырождения в магн. поле используется для эксперим. изучения частиц с ненулевым спином методом ЭПР. [c.148]

    Если линии ЭПР имеют сверхтонкую структуру, обусловленную взаимод. неспаренньгх электронов с магн. ядрами в радикалах, константы этого взаимод. в 2 раза меньше, чем константы аналогичного взаимод. для радикалов, не входящих в Р. п. Кроме того, каждый неспареиный электрон взаимод. с магн. ядрами обоих радикалов, составляющих Р.П., что указывает на сильный обмен неспаренными электронами в Р. п. Наиб, полную информацию получают из спектров ЭПР монокристаллов, исследование угловых зависимостей к-рых дает главные значени.ч D и позволяет оценить взаимную ориентацию радикалов в Р.п,, их расположение относительно внеш. магн. поля. [c.159]

    С.Э.М. применяют.также для измерения коистант спин-спинового и сверхтонкого взаимодействий, хим. сдвигов, магн. и квадрупольных уширений линий в спектрах ЯМР и ЭПР и др. радиоспектроскопич. параметров. При этом используют разнообразные последовательности и комбинации импульсов поля.  [c.402]

    Модификации метода. В двойном электрон-ядерном резонансе (ДЭЯР) образец подвергают одновременному воздействию СВЧ излучения и переменного магн. поля в области частот ЯМР. При этом СВЧ излучение и постоянное магн. поле поддерживаются в условиях резонанса, а частота ЯМР, т. е. переменное магн. поле, обеспечивающее реализацию ЯМР при данном постоянном магн. поле, меняется в диапазоне, отвечающем величинам СТВ конкретной спиновой системы. При выполнении условия ядерного резонанса происходит изменение интенсивности сигнала ЭПР. Спектр ДЭЯР, т. обр., представляет собой фафик изменения интенсивности сигнала ЭПР в зависимости от изменения частоты ЯМР. Метод значительно упрощает спектры исследуемых объектов. Напр., если спектр ЭПР радикала ( sHs), содержит 196 линий СТС, то в спектре ДЭЯР регистрируется три пары линий, отвечающих трем наборам протонных констант СТВ для этого радикала (орто-, мета-, иара-протоны трех фенильных колец). [c.450]


Смотреть страницы где упоминается термин Магний линии спектра: [c.449]    [c.518]    [c.232]    [c.30]    [c.144]    [c.123]    [c.314]    [c.324]    [c.42]    [c.91]    [c.440]    [c.38]    [c.83]    [c.159]    [c.298]    [c.449]    [c.450]    [c.516]   
Аналитическая химия магния (1973) -- [ c.168 ]




ПОИСК







© 2025 chem21.info Реклама на сайте