Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ТРТ, физические процессы

    Нефтегазовая подземная гидромеханика получает дальнейшее развитие под влиянием новых актуальных задач, выдвигаемых практикой разработки нефтяных, газовых и газоконденсатных месторождений. В связи с этим, наряду с изложением традиционных вопросов, гораздо большее внимание уделяется задачам взаимного вытеснения жидкостей и газов в пористых средах, задачам с подвижной границей и эффективным приближенным методам их решения. Эти последние разделы составляют теоретическую базу при моделировании многих технологических процессов, связанных с повышением нефте- и газоотдачи пластов. Рассмотрены основные типы моделей физических процессов, происходящих при фильтрации пластовых флюидов в процессе разработки и эксплуатации природных залежей при этом основное внимание уделяется численному моделированию. Дается анализ численных схем и алгоритмов, апробированных и хорошо зарекомендовавших себя в подземной гидродинамике и ее приложениях. [c.7]


    Наряду с изменением скорости реакции, необходимо исследовать характер изменений, которые вносит сама реакция в состояние системы. Такого рода исследование проводится в главе, посвященной интегрированию кинетических уравнений при постоянной температуре там же описываются способы определения кинетических констант. Характерная черта, вносящая принципиальное различие между прикладной и чистой химической кинетикой, — это исследование взаимодействия химических и физических процессов. Этому вопросу посвящена глава VI, в которой проводится анализ различных стадий гетерогенно-каталитического процесса. [c.8]

    Исходя из закона Гесса, представлялось вполне вероятным, что закон сохранения энергии равно применим и к химическим, и к физическим процессам. И действительно, дальнейшие обобщения показали, что законы термодинамики, вероятнее всего, проявляются в химии точно так же, как и в физике. [c.109]

    Будем использовать классический подход (инженера или математика) к решению проблемы моделирования, который заключается в том, чтобы сформулировать исходную задачу, описывающую физический процесс и затем постараться ввести необходимое количество упрощающих предположений для формулировки ново задачи, которая поддается решению теми или иными средствами. Под моделью будем понимать образ, описание объекта исследования, отражение его характеристик. Моделирование — метод исследования, научного познания объектов разной природы при помощи моделей. [c.371]

    Это направление в экспериментах и в теории привело к выводу, что определенным химическим реакциям, как и физическим процессам, присуще свойственное только им самопроизвольное направление, приводящее к увеличению энтропии. Однако энтропия представляет собой величину, трудную для непосредственного измерения, поэтому химики начали искать другой, более простой критерий. [c.109]

    Возникновение колебаний при неустойчивом горении, помимо физикомеханических факторов, объясняется наличием периода индукции, т. е. промежутка времени между изменением величины подачи топлива и последующим изменением давления в камере сгорания в результате сгорания топлива. Величина периода индукции зависит от физических процессов (распыление, смешение, испарение) и химической реакции компонентов. При уменьшении периода индукции возможность возникновения неустойчивого режима горения уменьшается. [c.119]


    Взаимодействие химических и физических процессов [c.119]

    На нефте- и газоперерабатывающих заводах наибольшее рас — пространение получили следующие физические процессы разделения углеводородных газов на индивидуальные или узкие технические фракции конденсация, компрессия, ректификация и абсорбция. На ГФУ эти процессы комбинируются в различных сочетаниях. [c.203]

    Изменение внутренней энергии системы представляет собой изменение а) кинетической энергии поступательного и вращательного движения молекул, б) сил притяжения и отталкивания между молекулами, в) внутримолекулярной вибрации и вращения отдельных атомов и электронов в молекуле и т. п. В случае идеальных газовых систем, при чисто физических процессах, изменение внутренней энергии состоит лишь в изменении кинетической энергии молекулярного движения, т. е. в изменении температуры газа. [c.67]

    Топливно-химическое направление можно реализовать и па промысловых заводах с использованием основных физических процессов. [c.213]

    Данная книга является, прежде всего, базовым учебником, предназначенным для студентов специальности 09.07 Разработка и эксплуатация нефтяных и газовых месторождений , но может быть использована и студентами других специальностей вузов нефтегазового профиля и, прежде всего, при подготовке инженеров-исследователей по специальности 09.06 Физические процессы нефтегазового производства и инже-неров-математиков по специальности 01.02 Прикладная математика . Она может быть полезной также для изучения основ нефтегазовой подземной гидромеханики студентами других нефтегазовых специальностей. [c.8]

    Если [i( , т), с( , т)]-решение рассматриваемой задачи, то при любом значении а О величины [s(a , ах), с(а , ах)] тоже являются решением этой задачи. В этом легко убедиться прямой подстановкой в систему уравнений и краевые условия. Задача (10.11), (10.12), (10.19), (10.20), описывающая реальный физический процесс, имеет единственное решение. Поэтому для любого а О выполняются следующие равенства  [c.308]

    Аналоговое моделирование основано на аналогиях, существующих в описании некоторых фильтрационных процессов с другими физическими явлениями (диффузией, процессом переноса тепла, электрического тока и т.д.). Основная причина существования аналогий-это однотипность уравнений, описывающих физические процессы различной природы. Аналогия устанавливается на основании того факта, что характеристические уравнения (например, закон Дарси и закон Ома) выражают одни и те же принципы сохранения (массы, импульса, энергии, электричества и т.п.), лежащие в основе многих физических явлений. Существующие аналогии позволяют разрабатывать аналоговые модели. [c.376]

    Поведение реального физического процесса в данных условиях может совпадать с поведением идеального процесса, а может и не совпадать с ним. Так, при движении твердых частиц в жидкости при захлебывании наблюдается нарушение только условия стационарности. Поведение потока в данном случае может быть описано в рамках принятой нами модели идеального дисперсного потока, но с использованием нестационарных уравнений. При движении пузырей в условиях, близких к захлебыванию, в среднем поток остается стационарным (расходы фаз не изменяются), но нарушаются условия отсутствия коалесценции и монодисперсности частиц, что приводит к существенным изменениям картины течения и соответственно к кризису принятой модели идеального дисперсного потока. В частности, существенно изменяется сила межфазного взаимодействия, появляется значительная неравномерность распределения пузырей по сечению аппарата, а движение фаз, по-видимому, уже не может быть удовлетворительно описано с помощью двухскоростной модели. [c.96]

    Благодаря этому решение задачи для некоторого физического процесса иногда бывает удобным выполнять при помощи аналоговой модели, реализующей другой физический процесс. Рассмотрим некоторые употребляемые аналоговые модели. [c.376]

    Аналогии между различными физическими процессами [c.377]

    Следует подчеркнуть, что зависимость типа а характерна для простых реакций, другие типы температурной зависимости—для сложных реакций или реакций, на протекание которых влияет скорость физических процессов. Сильная зависимость скорости химических реакций от температуры была замечена уже давно и учитывалась соотношением г=аТ ", где т изменялось от 6 до 8. Позднее (в 1878 г.) Гуд предложил уравнение г=ае 1Т. В 1889 г. Аррениус дал рациональное объяснение (которое до сих пор является общепринятым) к уравнению скорости простого экспоненциального вида. Пытаясь объяснить влияние температуры на скорость инверсии тростникового сахара в присутствии кислот, он высказал предположение, что непрерывно образующаяся тауто-мерная форма сахара более чувствительна к воздействию кислот, чем нормальная форма. Таутомерная форма имеет определенную теплоту образования и находится в равновесии с нормальной формой. К этому равновесию Аррениус применил термодинамическое уравнение  [c.31]


    Цель исследователя-расчет движений, описывающих физический процесс, и составление на этой основе практических рекомендаций и прогнозов. [c.379]

    Сложность процесса горения обусловлена тем, что химические реакции протекают в условиях быстро изменяющихся температур и концентраций реагирующих веществ, причем температура и градиент концентраций изменяются также под влиянием одновременно протекающих физических процессов тепло-и массообмена и различных газодинамических возмущений. В тепловых двигателях, работающих на жидком топливе, процесс горения осложняется одновременно протекающими физическими процессами испарения капель распыленного топлива и смешения паров топлива с воздухом. [c.112]

    Теоретическое рассмотрение такого сложного процесса, основанное на изучении его детального механизма, кинетики химических реакций с учетом влияния различных факторов, осложняющих процесс (испарение, перенос тепла и реагирующих веществ), трудно осуществимо. Приходится прибегать к построению упрощенных моделей процесса горения. В теории горения широкое распространение получила упрощенная модель, основанная на представлении о том, что скорость химической реакции горения лимитируется медленно протекающими физическими процессами — испарения распыленного топлива, смесеобразования, теплообмена и т. п. ( физическая модель процесса горения) [144]. Данная модель предполагает, что химические закономерности горения могут быть сведены к физическим закономерностям. [c.112]

    Как отмечалось выше, в современной теории горения широкое распространение получила упрощенная физическая модель процесса, согласно которой скорость химических реакций горения лимитируется одновременно протекающими медленными физическими процессами — испарением распыленного топлива, смесеобразованием, теплообменом и др. Согласно этой модели химические факторы в процессе горения не играют существенной роли. [c.144]

    Вопросы взаимосвязи физических и химических процессов были рассмотрены Н. Н. Семеновым [160]. Отмечалось, что в процессах, протекающих во времени, может наблюдаться существенное различие между физическими и химическими явлениями. Был сформулирован закон, устанавливающий, что в отличие от физических процессов скорость химического процесса зависит от предыстории реагирующих веществ, приводящей к изменению их реакционной способности. Указывалось на невозможность сведения химических закономерностей к физическим при рассмотрении процесса на молекулярном уровне. [c.144]

    Рассматривая задачи технической кинетики, необходимо помнить, что химическая реакция не всегда определяет скорость превращения. Как было уже указано, реакции могут сопутствовать различные физические процессы, которые в определенных условиях оказывают значительное влияние на скорость превращения и, следовательно, должны учитываться в зависимости скорости превращения от свойств реакционной системы. [c.204]

    Среди различных физических процессов, которые используются в переработке нефти, дистилляция применяется чаще всего. Адсорбция, избирательное растворение и избирательное осаждение, включая кристаллизацию, также имеют важное значение, хотя и осуществляются в меньшем масштабе. [c.258]

    Природа функции / определяется законом действия масс, обсуждаемым в настоящей главе. Однако следует подчеркнуть, что приведенные уравнения скорости применимы только к простым реакциям. Если реакция протекает через несколько стадий, включающих химические и физические процессы, один параметр к может оказаться недостаточным для определения скорости, и часто невозможно отделить параметры, входящие в уравнение скорости, рт концентраций или относительных количеств реагирующих в еств, как это сделано в уравнении (I, 4). [c.21]

    Преимущества физических процессов очистки состоят в следующем стоимость их низка, легче и точнее осуществляется контроль качества и меньше потери при обработке. Хотя остатки после физической очистки имеют низкое качество, но находят большее применение, чем отходы и остатки после химической обработки, например, остатки сернокислотной очистки. Кроме того, применение ингибиторов окисления и подобных им добавок делает глубокую химическую очистку менее необходимой и еще менее желательной. [c.258]

    Проблема скорости массопередачи в неподвижном слое широко исследовалась первоначально в области абсорбции, адсорбции, дистилляции и экстракции. В реакционных системах твердые гранулы обычно имеют меньшие размеры, чем частицы твердых веществ в упомянутых физических процессах, но аналогичные соотношения, по-видимому, применимы и здесь. Псевдоожиженный слой используется в таких физических процессах, как осушка газов или фракционированная адсорбция углеводородов, но его главное применение—в каталитических реакциях. [c.283]

    Уяснить себе механизм физического процесса или его упрощенной модели. Например, рассматривая массопередачу, можно во многих случаях полагать, что все сопротивление сосредоточено в тонкой неподвижной пограничной пленке, к которой может быть применен закон Фика. [c.384]

    Кроме того, из-за влияния шумов точно определить производную от физического процесса довольно трудно. Изменения, происходящие в окружающей среде и в приборах, часто незначительной продолжительности, кумулятивно влияют на измерения выходной переменной. Эти шумовые сигналы имеют большие и быстро меняющиеся производные. [c.127]

    Математическое описание физического процесса никогда не может быть совершенно точным. Это связано прежде всего с тем, что при составлении дифференциальных уравнений мы не можем учесть все факторы, оказывающие влияние на исследуемый процесс. В частности, разделяя все величины, фигурирующие в уравнениях, на переменные величины и параметры, мы не учитываем влияния, которое оказывает ход процесса, т. е. изменение переменных величин, на значения параметров. Но и пренебрегая этим влиянием, мы не можем считать значения параметров фиксированными, так как они находятся опытным путем и, следовательно, являются приближенными числами. [c.28]

    Ропер, Хэтч и Пигфорд [1] рассмотрели проблему химической абсорбции на примере одновременной абсорбции двух взаимодействующих между собой газов в жидкой фазе. Физическим процессом, который наводит на мысль о рассмотрении этой проблемы, является абсорбция двуокиси углерода и аммиака водой в жидкой фазе СОг н N1 3 реагируют с образованием либо карбоната, либо карбамата аммония. Ясно, что рассматриваемый процесс не может протекать в режиме мгновенной реакции, потому что концентрация обоих реагентов на поверхности газ — жидкость конечна. Следовательно, необходимо рассмотреть только реи<имы медленной и быстрой реакции. [c.112]

    Таким образом, мы внди.м, что реальная картина турбулентности в вязком подслое оказывается несоизмеримо сложнее простейших гидродина.мнческих моделей, предлагаемых в рамках теорий проницания и обновления поверхности . По-видимому, при современном состоянии наших знаний о структуре течения в подслое невозможно создать модель, которая бы правильно отражала физические процессы в подслое. Хотя в будущем м подход, основашгый на модельном описании гидродинамики, и подход, основанный на приближенном решении дина-.мических уравнений, несомненно, приведут к одному и тому же результату — последовательной теории турбулентного переноса, находящейся в полном соответствии с опытными данными, — однако на данном этапе более перспективным яв,1яется динамический подход. К этой точке зрения приходят и некоторые [c.180]

    Технологические процессы НПЗ принято классифицировать иа (бедующие 2 группы физические и химические (табл,3.6). физическими процессами (перегонка, сольвентная деасфальтизация, экстрак — I щя полярными расворителями, депарафинизация адсорбционная, кар — бамидная, кристаллизация и др.) достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) без химических превращений или удаление (извлечение) из фракций или остатков нефти нежелательных групповых химических компонентов (асфальтенов, полициклических ароматических углеводородов) из масляных фракций, парафинов из реактивных, дизельных топлив и масел, тем самым снижая их температуру застывания. [c.92]

    Оказывается, что уравнение этогд типа описывает различные физические процессы, если величинам ф, / поставить в соответствие определенные физические параметры (табл. 13.1). [c.376]

    Математические модели представляют собой совокупность математических объектов и отношений (уравнений), описываюших изучаемый физический процесс на основе некоторых абстракций и допущений, опирающихся на эксперимент и необходимых с практической точки зрения для того, чтобы сделать задачу разрешимой. При моделировании процессов разработки нефтегазовых месторождений эти соотношения в общем виде представляют собой сложные (обычно нелинейные) дифференциальные уравнения в частных производных с соответствующими начальными и граничными условиями (см. гл. 2, 8, 10). [c.379]

    В промышленной практике довольно часто приходится иметь дело с вычислениями количественных соотношений между компонентами начальных п конечных продуктов производства, в основе которого лежат физические процессы. При этих процессах не образуется новых компонентов, а то/гько происходят изменения состава продуктов, которые подвергаются обработке или хранению при определенных условиях. Поэтому, составляя мате(1илльиы1" баланс этих процессов, следует иметь в виду, что в приходной и расходной частях его участвуют одни и те же компоненты, но только в различных количественных соотношениях. [c.27]

    По- тому при техно-химических расчетах необходимо знать 1еплопые эффекты данного химического или физического превращения. Эти данные обычно находят в справочниках. В расчетной практике чаще всего приходится иметь дело со следующими видами геплот химических и физических процессов а) теплотой реакц ш, б) теплотой испарения (парообразования), в) теплотой плавления, г) теплотой растворения. [c.107]

    Действитёльно, в капле, движущейся в газовой среде, протекает ряд физических процессов, которые могут резко интенсифицировать переход молекулы в возбужденное состояние. Так, установлено, что при движении капли в газовой среде (Ке> >200) позади капли образуются завихрения, приводящие к возникновению колебаний в капле. Фррма капли при колебаниях изменяется, переходя от сплющенного эллипса к вытянутому. Одновременно в капле отмечаются интенсивные циркуляционные токи. Важной особенностью капельного состояния является наличие избыточной поверхностной энергии. Все это вместе взятое, по-видимому, и обусловливает интенсивный переход молекулы из основного состояния в возбужденное по механизму, аналогичному рассмотренному выше. [c.38]

    Возможен прямой экспериментальный подход, при котором изучается влияние всех параметров процесса, например начальных концентраций, растворителей, температуры, давления, скорости теплообмена, перемешивания, объемной скорости и свойств катализатора. При помощи графиков и диаграмм, на которых показано влияние этих переменных, в сочетании с имеющимися уже соотношениями для физических процессов, определяющих характер данной реакции, можно сделать выбор условий работы промышленной установки. Разработка и создание лабораторного и опытного оборудования не могут здесь рассматриваться. Однако можно сделать ссылки на литературу, особенно на серию посвященных имеющимся опытным установкам статей, которые появлялись с 1947 г. в журнале Industrial and Engineering hemistry . Кроме того, в последнее время издан ряд книг, в которых затрагиваются принципиальные и практические вопросы проведения экспериментальных работ - .  [c.340]

    Колонны с насадкой, часто применяемые для осуществления чисто физических процессов массопередачи, используются также и для проведения гетерогенных реакций. Например, кожухотрубный реактор с насадкой для непрерывного хлорирования бензола состоит из ряда труб диаметром 102 мм и длиной около 7,6 м, заполненных керамическими кольцами Рашига диаметр кожуха аппарата 1,22 л, пропускная способность составляет около 35 т бензола1сутки. Для уменьшения образования полихлорбензолов температура в реакторе поддерживается ниже 43 °С за счет циркуляции в межтрубном пространстве охлаждающей воды. [c.360]


Смотреть страницы где упоминается термин ТРТ, физические процессы: [c.119]    [c.64]    [c.145]    [c.7]    [c.206]    [c.44]    [c.377]    [c.84]    [c.8]    [c.290]    [c.387]   
Ракетные двигатели на химическом топливе (1990) -- [ c.83 ]




ПОИСК







© 2025 chem21.info Реклама на сайте